
497CS 538 Spring 2002
©

Subclassing in Java
When a new class is defined in terms
of an existing class, the new class
extends the existing class. The new
class inherits all public and protected
members of its parent (or base) class.
The new class may add new methods
or fields. It may also redefine
inherited methods or fields.
class Point {

 int x,y;
 Point(int xin, int yin) {
 x = xin; y = yin;
 }
 static float dist(
 Point P1, Point P2) {
 return (float) Math.sqrt(
 (P1.x-P2.x)*(P1.x-P2.x)+

(P1.y-P2.y)*(P1.y-P2.y));
 }
}

498CS 538 Spring 2002
©

class Point3 extends Point {

 int z;
 Point3(int xin, int yin,
 int zin) {
 super(xin,yin); z=zin;
 }
 static float dist(
 Point3 P1, Point3 P2) {
 float d=Point.dist(P1,P2);
 return (float) Math.sqrt(
 (P1.z-P2.z)*(P1.z-P2.z)+

 d*d);
 }
}

Note that although Point3 redefines
dist , the old definition of dist is
still available by using the parent
class as a qualifier (Point.dist).
The same is true for fields that are
hidden when a field in a parent is
redeclared.

499CS 538 Spring 2002
©

Non-static methods are automatically
virtual: a redefined method is
automatically used in all inherited
methods including those defined in
parent classes that think they are
using an earlier definition of the
class.
Example:
 class C {

 void DoIt()(PrintIt();}
 void PrintIt()
 {println("C rules!");}
 }
 class D extends C {
 void PrintIt()
 {println("D rules!");}
 void TestIt() {DoIt();}
 }
 D dvar = new D();
 dvar.TestIt();

D rules! is printed.

500CS 538 Spring 2002
©

Static methods in Java are not virtual
(this can make them easier to
implement efficiently).

501CS 538 Spring 2002
©

Abstract Classes and Methods
Sometimes a Java class is not meant
to be used by itself because it is
intentionally incomplete.
Rather, the class is meant to be
starting point for the creation (via
subclassing) of more complete
classes.
Such classes are abstract.
Example:
abstract class Shape {

 Point location;

}

class Circle extends Shape {

 float radius;

}

502CS 538 Spring 2002
©

Methods can also be made abstract to
indicate that their actual definition
will appear in subclasses:
abstract class Shape {
 Point location;
 abstract float area();
}
class Circle extends Shape {
 float radius;
 float area(){
 return Math.pi*radius*radius;
 }
}

503CS 538 Spring 2002
©

Subtyping and Inheritance
We can use a subtyping mechanism,
as found in C++ or Java, for two
different purposes:
• We may wish to inherit the actual

implementations of classes and
members to use as the basis of a
more complete or extended class.
To inherit an implementation, we say
a given class “extends” an existing
class:
class Derived extends Base
 { ... };

Class Derived contains all of the
members of Base plus any others it
cares to add.

504CS 538 Spring 2002
©

• We may wish to inherit an interface—
a set of method names and values
that will be available for use.
To inherit (or claim) an interface, we
use a Java interface definition.
An interface doesn’t implement
anything; rather, it gives a name to a
set of operations or values that may
be available within one or more
classes.

505CS 538 Spring 2002
©

Why are Interfaces Important?
Many classes, although very different,
share a common subset of values or
operations. We may be willing to use
any such class as long as only
interface values or operations are
used.
For example, many objects can be
ordered (or at least partially-ordered)
using a “less than” operation.
If we always implement less than the
same way, for example,
boolean lessThan(Object o1,

 Object o2);

then we can create an interface that
admits all classes that know about
the lessThan function:

506CS 538 Spring 2002
©

interface Compare {

 boolean lessThan(Object o1,
 Object o2);

}

Now different classes can each
implement the Compare interface,
proclaiming to the world that they
know how to compare objects of the
class they define:
class IntCompare implements Compare {
 public boolean lessThan(Object i1,
 Object i2){
 return ((Integer)i1).intValue() <
 ((Integer)i2).intValue();}
}
class StringCompare implements
 Compare {
 public boolean lessThan(Object i1,
 Object i2){
 return
((String)i1).compareTo((String)i2)<0;
}}

507CS 538 Spring 2002
©

The advantage of using interfaces is
that we can now define a method or
class that only depends on the given
interface, and which will accept any
type that implements that interface.
class PrintCompare {
 public static void printAns(
 Object v1, Object v2, Compare c){
 System.out.println(
 v1.toString() + " < " +

v2.toString() + " is " +
 new Boolean(c.lessThan(v1,v2))
 .toString());
} }
class Test {
 public static void
 main(String args[]){
 Integer i1 = new Integer(2);
 Integer i2 = new Integer(1);
 PrintCompare.printAns(
 i1,i2,new IntCompare());
 String s2 = "abcdef";
 String s1 = "xyzaa";
 PrintCompare.printAns(
 s1,s2,new StringCompare());}}

508CS 538 Spring 2002
©

Since classes may have many methods
and modes of use or operation, a
given class may implement many
different interfaces. For example,
many classes support the Clonable
interface, which states that objects of
the class may be duplicated (cloned).

509CS 538 Spring 2002
©

Multiple Inheritance
We have seen that a class may be
derived from a given parent class. It is
sometimes useful to allow a class to
be derived from more than one
parent, inheriting members of all
parents. This is multiple inheritance; it
is allowed by C++ and Python, but
not by Java.
The basic idea is that sometimes we
want a “composite” object formed
from more than one source. Hence a
Computer object can be viewed as
both a PhysicalObject (with
height, weight, color, cost, etc.) and
also a CPUImplementation (with
memory size, processor design,
processor speed, I/O ports, etc.)

510CS 538 Spring 2002
©

Using multiple inheritance we merge
aspects of a PhysicalObject and a
CPUImplementation , and perhaps
add additional data:
class PhysicalObject {
 float height, width, weight;
 Color outsideColor;
 ... }
class CPUImplementation {
 CPUClass CPUKind;
 int memorySize, CPUSpeed;
 ...
}
class Computer: PhysicalObject,
 CPUImplementation {
 String myURL; ...
}

The advantages of multiple
inheritance are obvious—you can
build a class from many sources
rather than just one.

511CS 538 Spring 2002
©

There are problems though:
• If the same name appears in more

than one parent, which is used? For
example, if both parents contain a
“copyright” field, which do you get?
C++ forbids access to fields common
to several parents, though accidental
clashes of member names are
certainly possible. Python relies on
order of specification of the parents
(which can be somewhat arbitrary).

• Access to fields and methods can be
less efficient. A method in a parent
class can’t know how fields in derived
class will be allocated when multiple
parents may exist. Hence some form
of indirection may be needed.
For example, in class
PhysicalObject , we may believe

512CS 538 Spring 2002
©

that height is the first field
allocated, while in
CPUImplementation we may
believe that CPUKind is allocated
first. But in class Computer , which
contains both height and CPUKind ,
both fields can’t come first.

