
513CS 538 Spring 2002
©

Exceptions in Java
Java provides a fairly elaborate
exception handling mechanism based
on the throw-catch model.
All exceptions are objects, required to
be a subclass of Throwable .
Class Throwable has two subclasses,
Exception and Error . Class
Exception has a subclass
RuntimeException .
Exceptions may be explicitly thrown
(using a throw statement) or they
may be implicitly thrown as the result
of a run-time error.
For example, an
ArithmeticException is thrown for
certain run-time arithmetic errors,
like division by zero.

514CS 538 Spring 2002
©

Unlike other languages, Java divides
exceptions into two general classes:
checked and unchecked.
A checked exception must either be
caught (using a try-catch block) or
propagated (by marking a method as
throwing the exception).
This means that checked exceptions
cannot be ignored—you must be
prepared to catch them or you must
“advertise” to your callers that you
may throw an exception back to
them.
Unchecked exceptions need not be
caught or marked as potentially
thrown. This makes exception
handling for such exceptions
optional. Unchecked exceptions are
typically those that might occur so

515CS 538 Spring 2002
©

often (like NullPointerException
or ArithmeticException) that
forced checks could unnecessarily
clutter a program without significant
benefit.
How are checked and unchecked
exceptions distinguished?
• Any exception that is a member (or

subclass) of Error or
RuntimeException is unchecked.

• All other exceptions must be checked.
Exceptions are propagated
dynamically:
• When an exception is thrown

(explicitly or implicitly) the
innermost try-catch block that can
“catch” the exception is selected, and

516CS 538 Spring 2002
©

the catch block that matches the
exception is executed.

• A catch block “catches” a given
exception if the class of the
exception is the same as the class
used in the catch. An exception that
is a subclass of the catch’s exception
class will also be caught.
Thus an catch that handles class
Throwable catches all exceptions.

• If no catch can handle the exception
in the current method, a return to the
method’s caller is forced, and the
exception is rethrown from the point
of call.

• This process is repeated until a catch
that can handle the exception is
found or until we force a return from
the main method.

517CS 538 Spring 2002
©

• If a return from the main method is
forced, no handler exists. A run-time
error message is printed (“Uncaught
exception”) and execution is
terminated.

• One of the limitations of Java’s
exception mechanism (and similar
mechanisms found in other
languages) is that there is no “retry”
mechanism. Once an exception is
thrown, we never go back to the
point where the exception occurred.
This is why Scheme’s call/cc
mechanism is considered so special
and unique.

518CS 538 Spring 2002
©

Example:
class badValue extends Exception{
 float value;
 badValue(float f) {value=f;} }

float sqrt(float val)
 throws badValue {
 if (val < 0.0)
 throw new badValue(val);
 else return
 (float) Math.sqrt(val); }

try {
 System.out.println(
 "Ans = " + sqrt(-123.0));
} catch (badValue b) {
 System.out.println(
 "Can't take sqrt of "+b)
}

519CS 538 Spring 2002
©

Reading Assignment
• Pizza Tutorial

(linked from class web page)

520CS 538 Spring 2002
©

Threads and Parallelism in Java
Java is one of the few “main stream”
programming languages to explicitly
provide for user-programmed
parallelism in the form of threads.
A Java programmer may organize a
program as several threads that may
execute concurrently.
Even if the program is run on a uni-
processor, use of threads may improve
performance. This is because the
threads can be multi-programmed,
with threads switched automatically
on I/O delays, page faults or even
cache misses.
A program that is designed to support
multiple threads is also “prepared” for
future upgrades to multiprocessors or
multi-threaded processors.

521CS 538 Spring 2002
©

Java Threads
In Java any class that implements the
Runnable interface can be started as
a concurrent thread:
 interface Runnable {

 public void run();

 }

When the thread is started, the
method run begins to execute
(perhaps concurrently with other
threads of the main program).
You create a thread using the Thread
constructor:

new Thread(RunnableObject)

Creating a thread does not start it;
you must execute the start method
within the Thread object.

522CS 538 Spring 2002
©

When this is done, the run method
immediately starts, and continues
until that method terminates
normally, or it throws an uncaught
exception, or it is explicitly stopped,
or the main program stops.
On uniprocessors, thread execution is
interleaved; on multiprocessors or
multithreaded architectures execution
can be concurrent.

class DoSort implements Runnable {
 int [] data;
 DoSort(int[] in) {data=in;}
 public void run(){
 // sort the data array;
 }
}

523CS 538 Spring 2002
©

class Test {
 public static void
 main(String args[]){
 DoSort d =
 new DoSort(new int[1000]);
 Thread t1 = new Thread(d);
 t1.start();

 // We can continue while t1
 // does its sort
 }
}

524CS 538 Spring 2002
©

We can start multiple threads, and
the threads can use sleep to delay or
synchronize their execution:
class PingPong
 implements Runnable {
 int delay; String word;
 PingPong(String s,int i){
 delay=i;word=s;};
 public void run(){
 try {
 while(true){

System.out.print(word+" ");
 Thread.sleep(delay);
 }}

catch (InterruptedException e)
 {}
 }

525CS 538 Spring 2002
©

 public static void
 main(String args[]){
 Thread t1 = new Thread(
 new PingPong("ping",33));
 Thread t2 = new Thread(
 new PingPong("PONG",100));
 t1.start();
 t2.start();
 }
}

ping PONG ping ping PONG ping
ping ping PONG ping ping PONG
ping ...

526CS 538 Spring 2002
©

Synchronization in Java
We often want threads to co-operate,
typically in how they access shared
data structures.
Since thread execution is
asynchronous, the details of how
threads interact can be unpredictable.
Consider a method
 update() {

 n = n+1;

 val = f(n);

}

that updates fields of an object.
If two or more threads execute
update concurrently, we might get
unexpected or even illegal behavior.
(Why?)

527CS 538 Spring 2002
©

A Java method may be synchronized,
which guarantees that at most one
thread can execute the method at a
time. Other threads wishing access,
are forced to wait until the currently
executing thread completes.
Thus
void synchronized update() { ... }

can safely be used to update an
object, even if multiple threads are
active.
There is also a synchronized
statement in Java that forces threads
to execute a block of code
sequentially.
synchronized(obj) {

 obj.n = obj.n+1;

 obj.val = f(obj.n);

}

528CS 538 Spring 2002
©

Synchronization Primitives
The following operations are provided
to allow threads to safely interact:
wait() Sleep until awakened
wait(n) Sleep until awakened

or until n milliseconds
pass

notify() Wake up one sleeping
thread

notifyAll() Wake up all sleeping
threads

Using these primitives, correct
concurrent access to a shared data
structure can be programed.

529CS 538 Spring 2002
©

Consider a Buffer class in which
independent threads may try to store
or fetch data objects:

class Buffer {
 private Queue q;
 Buffer() { q = new Queue(); }
 public synchronized void
 put(Object obj) {
 q.enqueue(obj);
 notify(); //Why is this needed?
 }
 public synchronized Object
 get() {
 while (q.isEmpty()) {

//Why a while loop?
 wait();
 }
 return q.dequeue();
 }
}

