
530CS 538 Spring 2002
©

Locks, Semaphores and
Monitors

Java’s synchronization mechanisms
are based upon the notion of a lock. A
lock is a special value that can be
held by at most one thread.
If a thread holds a lock, it has
permission to do some “critical”
operation like writing a shared
variable or restructuring a shared
data object.
If a thread wants to do an operation
but doesn’t hold the necessary lock, it
must wait until it gets the lock.
In Java there is a lock associated with
each run-time object.

531CS 538 Spring 2002
©

Lock Granularity and Access
Though each Java object has a lock,
you often don’t want to lock and
unlock each object you access.
If you are manipulating a large data
structure (like a tree or hash table),
acquiring the lock for each object in
the tree or table can be costly and
error-prone.
Instead, it is common to create a lock
corresponding to a group of objects.
Hence holding the lock to the root of
a tree may give you permission to
access the whole tree.
There is a danger though—if all or
most of a large structure is held by
one thread, then other threads won’t
be able to access that structure
concurrently.

532CS 538 Spring 2002
©

For example, a large shared data base
(like one used to record current
bookings for an airline) shouldn’t be
held exclusively by one thread—
hundreds of concurrent threads may
want to access it at any time. An
intermediate lock, like all reservations
for a single fight, is more reasonable.
There is also an issue of how long you
hold a lock. The ideal is to have
exclusive access for as short a period
as is necessary. Work that is not
subject to interference by other
threads (like computations using local
variables) should be done before a
lock is obtained. Hence Java’s
synchronized statement allows a
method to get exclusive access to an
object for a limited region, enhancing
shared access.

533CS 538 Spring 2002
©

Deadlock
A variety of programming problems
appear in concurrent programs that
don’t exist in ordinary sequential
programs.
The most serious of these is deadlock:
Two or more threads hold locks that
other threads require. Each waits for
the other thread to release a needed
lock, and no thread is able to execute.
As an example of how deadlock may
occur, consider two threads, t1 and
t2 . Each requires two files, a master
file and a log file. Since these files are
shared, each has a lock.
Assume t1 gets the lock for the
master file while t2 (at the same
instant) gets the lock for the log file.

534CS 538 Spring 2002
©

Now each is stuck. Each has one file,
and will wait forever for the other file
to be released.
In Java deadlock avoidance is wholly
up to the programmer. There are no
language-level guarantees that
deadlock can’t happen.
Some languages have experimented
with ways to help programmers avoid
deadlock:
• If all locks must be claimed at once,

deadlock can be avoided. You either
get all of them or none, but you can’t
block other threads while making no
progress yourself.

• Locks (and the resources they
control) can be ordered, with the rule
that you must acquire locks in the

535CS 538 Spring 2002
©

proper order. Now two threads can’t
each hold locks the other needs.

• The language can require that the
largest set of locks ever needed be
declared in advance. When locks are
requested, the operating system can
track what’s claimed and what may
be needed, and refuse to honor
unsafe requests.

536CS 538 Spring 2002
©

Fairness & Starvation
When one thread has a lock, other
threads who want the lock will be
suspended until the lock is released.
It can happen that a waiting thread
may be forced to wait indefinitely to
acquire a lock, due to an unfair
waiting policy. A waiting thread that
never gets a lock it needs due to
unfair lock allocation faces starvation.
As an example, if we place waiting
threads on a stack, newly arrived
threads will get access to a lock
before earlier arrivals. This can lead to
starvation. Most thread managers try
to be fair and guarantee that all
waiting threads have a fair chance to
acquire a lock.

537CS 538 Spring 2002
©

How are Locks Implemented?
Internally, Java needs operations to
acquire a lock and release a lock.
These operations can be implemented
using the notion of a semaphore.
A semaphore is an integer value
(often just a single bit) with two
atomic operations: up and down.
up(s) increments s atomically.
down(s) decrements s atomically.
But if s is already zero, the process
doing the down operation is put in a
wait state until s becomes positive
(eventually some other process should
do an up operation).
Now locks are easy to implement.
You do a down(lock) to claim a lock.
If someone else has it, you are forced

538CS 538 Spring 2002
©

to wait until the lock is released. If
the lock value is > 0 you get it and all
others are “locked out.”
When you want to release a lock, you
do up(lock) , which makes lock
non-zero and eligible for another
thread to claim.
In fact, since only one thread will ever
have a lock, the lock value needs to
be only one bit, with 1 meaning
currently free and unlocked and 0
meaning currently claimed and
locked.

539CS 538 Spring 2002
©

Monitors
Direct manipulation of semaphores is
tedious and error-prone. If you
acquire a lock but forget to release it,
threads may be blocked forever.
Depending on where down and up
operations are placed, it may be
difficult to understand how
synchronization is being performed.
Few modern languages allow direct
use of semaphores. Instead,
semaphores are used in the
implementation of higher-level
constructs like monitors.
A monitor is a language construct
that guarantees that a block of code
will be executed synchronously (one
thread at a time).

540CS 538 Spring 2002
©

The Java synchronized statement is
a form of monitor.
When
synchronized(obj) { ... }

is executed, “invisible” getLock and
freeLock operations are added:
synchronized(obj) {
 getLock(obj)

 ...

 freeLock(obj);

}

This allows the body of the
synchronized statement to execute
only when it has the lock for obj .
Thus two different threads can never
simultaneously execute the body of a
synchronized statement because
two threads can’t simultaneously hold
obj ’s lock.

541CS 538 Spring 2002
©

In fact, synchronized methods are
really just methods whose bodies are
enclosed in an invisible
synchronized statement.
If we execute
 obj.method()

where method is synchronized,
method ’s body is executed as if it
were of the form
synchronized(obj) {

 body of method

}

Operations like sleep , wait , notify
and notifyAll also implicitly cause
threads to release locks, allowing
other threads to proceed.

