
542CS 538 Spring 2002
©

Pizza
Pizza is an extension to Java developed
in the late 90s by Odersky and Wadler.
Pizza shows that many of the best ideas
of functional languages can be
incorporated into a “mainstream”
language, giving it added power and
expressability.
Pizza adds to Java:
1. Parametric Polymorphism

Classes can be parameterized with
types, allowing the creation of
“custom” data types with full
compile-time type checking.

2. First-class Functions
Functions can be passed, returned and
stored just like other types.

543CS 538 Spring 2002
©

3. Patterns and Value Constructors
Classes can be subdivided into a
number of value constructors, and
patterns can be used to structure the
definition of methods.

544CS 538 Spring 2002
©

Parametric Polymorphism
Java allows a form of polymorphism
by defining container classes (lists,
stacks, queues, etc.) in terms of values
of type Object .
For example, to implement a linked
list we might use:
class LinkedList {
 Object value;
 LinkedList next;
 Object head() {return value;}

LinkedList tail(){return next;}
 LinkedList(Object O) {
 value = O; next = null;}
 LinkedList(Object O,
 LinkedList L){
 value = O; next = L;}
}

545CS 538 Spring 2002
©

We use class Object because any
object can be assigned to Object (all
classes must be a subclass of
Object).
Using this class, we can create a
linked list of any subtype of Object .
But,
• We can’t guarantee that linked lists

are type homogeneous (contain only a
single type).

• We must cast Object types back into
their “real” types when we extract list
values.

• We must use wrapper classes like
Integer rather than int (because
primitive types like int aren’t
objects, and aren’t subclass of
Object).

546CS 538 Spring 2002
©

For example, to use LinkedList to
build a linked list of int s we do the
following:

LinkedList L =
 new LinkedList(new Integer(123));

 int i =
 ((Integer) L.head()).intValue();

This is pretty clumsy code. We’d
prefer a mechanism that allows us to
create a “custom version” of
LinkedList , based on the type we
want the list to contain.
We can’t just call something like

LinkedList(int) or
LinkedList(Integer) because

types can’t be passed as parameters.
Parametric polymorphism is the
solution. Using this mechanism, we
can use type parameters to build a

547CS 538 Spring 2002
©

“custom version” of a class from a
general purpose class.
C++ allows this using its template
mechanism. Pizza also allows type
parameters.
In both languages, type parameters
are enclosed in “angle brackets” (e.g.,
LinkedList<T> passes T, a type, to
the LinkedList class).
In Pizza we have
class LinkedList<T> {
 T value; LinkedList<T> next;
 T head() {return value;}
 LinkedList<T> tail() {
 return next;}
 LinkedList(T O) {
 value = O; next = null;}
 LinkedList(T O,LinkedList<T> L)
 {value = O; next = L;}
}

548CS 538 Spring 2002
©

When linked list objects are created
(using new) no type qualifiers are
needed—the type of the constructor’s
parameters are used. We can create
LinkedList<int> L1 =
 new LinkedList(123);

int i = L1.head();

LinkedList<String> L2 =
 new LinkedList("abc");

String s = L2.head();

LinkedList<LinkedList<int> > L3 =
 new LinkedList(L1);

int j = L3.head().head();

549CS 538 Spring 2002
©

Bounded Polymorphism
In Pizza we can use interfaces to
bound the type parameters a class
will accept.
Recall our Compare interface:
interface Compare {

 boolean lessThan(Object o1,
 Object o2);

}

We can specify that a parameterized
class will only takes types that
implement Compare:
class LinkedList<T implements

Compare> { ... }

550CS 538 Spring 2002
©

In fact, we can improve upon how
interfaces are defined and used.
Recall that in method lessThan we
had to use parameters declared as
type Object to be general enough to
match (and accept) any object type.
This leads to clumsy casting (with
run-time correctness checks) when
lessThan is implemented for a
particular type:
class IntCompare implements Compare {
 public boolean lessThan(Object i1,
 Object i2){
 return ((Integer) i1).intValue() <
 ((Integer)i2).intValue();}
}

551CS 538 Spring 2002
©

Pizza allows us to parameterize class
definitions with type parameters, so
why not do the same for interfaces?
In fact, this is just what Pizza does.
We can now define Compare as
interface Compare<T> {
 boolean lessThan(T o1, T o2);
}

Now we define class LinkedList as
class LinkedList<T implements

Compare<T> > { ... }

Given this form of interface
definition, no casting (from type
Object) is needed in classes that
implement Compare:
class IntCompare implements

Compare<Integer> {
 public boolean lessThan(Integer i1,

Integer i2){
 return i1.intValue() <
 i2.intValue();}
}

552CS 538 Spring 2002
©

First-class Functions in Pizza
In Java, functions are treated as
constants that may appear only in
classes.
To pass a function as a parameter, you
must pass a class that contains that
function as a member. For example,
class Fct {
 int f(int i) { return i+1; }
}
class Test {

static int call(Fct g, int arg)
 { return g.f(arg); }
}

553CS 538 Spring 2002
©

Changing the value of a function is
even nastier. Since you can’t assign to
a member function, you have to use
subclassing to override an existing
definition:
class Fct2 extends Fct {
 int f(int i) { return i+111; }
}

Computing new functions during
executions is nastier still, as Java
doesn’t have any notion of a lambda-
term (that builds a new function).

554CS 538 Spring 2002
©

Pizza makes functions first-class, as
in ML. You can have function
parameters, variables and return
values. You can also define new
functions within a method.
The notation used to define the type
of a function value is
(T 1,T 2, ...)->T 0

This says the function will take the
list (T 1,T 2, ...) as it arguments
and will return T0 as its result.
Thus

(int)->int

represents the type of a method like
int plus1(int i) {return i+1;}

555CS 538 Spring 2002
©

The notation used by Java for fixed
functions still works. Thus
static int f(int i){return 2*i;};

denotes a function constant, f .
The definition
 static (int)->int g = f;

defines a field of type (int)->int
named g that is initialized to the
value of f .
The definition
static int call((int)->int f,
 int i)
 {return f(i);};

defines a constant function that takes
as parameters a function value of
type (int)->int and an int value.
It calls the function parameter with
the int parameter and returns the
value the function computes.

556CS 538 Spring 2002
©

Pizza also has a notation for
anonymous functions (function
literals), similar to fn in ML and
lambda in Scheme. The notation
fun (T 1 a 1, T 2 a 2, ...) -> T 0
 {Body}

defines a nameless function with
arguments declared as (T 1 a1, T 2 a2,

...) and a result type of T0. The
function’s body is computed by
executing the block {Body} .
For example,
static (int)->int compose(

 (int)->int f, (int)->int g){
 return fun (int i) -> int
 {return f(g(i));};

}

defines a method named compose . It
takes as parameters two functions, f
and g, each of type (int)->int .

557CS 538 Spring 2002
©

The function returns a function as its
result. The type of the result is
(int)->int and its value is the
composition of functions f and g:
 return f(g(i));

Thus we can now have a call like
compose(f1,f2)(100)

which computes f1(f2(100)) .

558CS 538 Spring 2002
©

With function parameters, some
familiar functions can be readily
programmed:
class Map {
 static int[] map((int)->int f,
 int[] a){
 int [] ans =
 new int[a.length];
 for (int i=0;i<a.length;i++)
 ans[i]=f(a[i]);
 return ans;
 };
}

559CS 538 Spring 2002
©

And we can make such operations
polymorphic by using parametric
polymorphism:
class Map<T> {
 private static T dummy;
 Map(T val) {dummy=val;};
 static T[] map((T)->T f,

T[] a){
 T [] ans = (T[]) a.clone();

for (int i=0;i<a.length;i++)
 ans[i]=f(a[i]);
 return ans;
 };
}

560CS 538 Spring 2002
©

Algebraic Data Types
Pizza also provides “algebraic data
types” which allow a type to be
defined as a number of cases. This is
essentially the pattern-oriented
approach we saw in ML.
A list is a good example of the utility
of algebraic data types. Lists come in
two forms, null and non-null, and we
must constantly ask which form of
list we currently have. With patterns,
the need to consider both forms is
enforced, leading to a more reliable
programming style.
In Pizza, patterns are modeled as
“cases” and grafted onto the existing
switch statement (this formulation is
a bit clumsy):

561CS 538 Spring 2002
©

class List {
 case Nil;
 case Cons(char head,
 List tail);
 int length(){
 switch(this){
 case Nil: return 0;
 case Cons(char x, List t):
 return 1 + t.length();
 }
 }
}

562CS 538 Spring 2002
©

And guess what! We can use
parametric polymorphism along with
algebraic data types:
class List<T> {
 case Nil;
 case Cons(T head,
 List<T> tail);
 int length(){
 switch(this){
 case Nil: return 0;
 case Cons(T x, List<T> t):
 return 1 + t.length();
 }
 }
}

563CS 538 Spring 2002
©

Enumerations as Algebraic
Data Types

We can use algebraic data types to
obtain a construct missing from Java
and Pizza—enumerations.
We simply define an algebraic data
type whose constructors are not
parameterized:
class Color {
 case Red;
 case Blue;
 case Green;
 String toString() {
 switch(this) {
 case Red: return "red";
 case Blue: return "blue";
 case Green: return "green";
 }
 }
}

564CS 538 Spring 2002
©

This approach is better than simply
defining enumeration values as
constant (final) integers:

final int Red = 1;

final int Blue = 2;

final int Green = 3;

With the algebraic data type
approach, Red, Blue and Green , are
not integers. They are constructors
for the type Color . This leads to more
thorough type checking.

565CS 538 Spring 2002
©

GJ—Generic Java
The Pizza project has lead to the
development of GJ (Generic Java) an
extension to Java that explicitly
supports generics (type parameters)
using parametric polymorphism.
The goals of GJ are
• Direct support for generics. Many

Java data types are generic over some
data type; this is especially common
for reusable libraries such as
collection classes.
GJ supports the use of such types, for
instance allowing one to write the GJ
type Vector<String> as opposed to
the Java type Vector . With GJ, fewer
casts are required, and the compiler
catches more errors.

566CS 538 Spring 2002
©

• GJ is a superset of the Java
programming language. Every Java
source program is still legal in GJ and
retains the same meaning in GJ.

• The GJ compiler can be used as a Java
compiler.

• GJ compiles into JVM (Java Virtual
Machine) code, so GJ programs run
on any Java platform, including Java
compliant browsers.

• Class files produced by the GJ
compiler can be freely mixed with
those produced by other Java
compilers.

• GJ is compatible with existing
libraries. One can call any Java library
function from GJ, and any GJ library
function from Java. Further, where it

567CS 538 Spring 2002
©

is sensible, one can assign GJ types
(with type parameters) to existing
Java libraries. For instance, the GJ
type Vector<String> is
implemented by the existing Java
library type Vector .

• GJ supports efficient translation. GJ
is translated by erasure: no
information about type parameters is
maintained at run-time. This means
GJ code is pretty much identical to
Java code for the same purpose, and
equally efficient.

• The GJ system is freely available and
fully documented. The GJ compiler is
itself written in GJ, so it runs on any
platform that supports Java. The GJ
compiler is available for download,

568CS 538 Spring 2002
©

and there is extensive
documentation.

• GJ has been proposed (by Sun
Microsystems) as the basis for the
implementation of generics (type
parameters) in the next major
revision of Java.

