
569CS 538 Spring 2002
©

Reading Assignment
• Python Tutorial

(linked from class web page)

570CS 538 Spring 2002
©

Scripting Languages
The languages we’ve seen so far are
“complete” programming languages.
They are designed to encode a
complete program, perhaps with the
assistance of library routines.
However, throughout the history of
programming another sort of
programming language has evolved
(and flourished)—the scripting
language.
Scripting languages evolved as simple
tools to “glue” together existing
programs and utilities.
When batch programming (rather
than interactive programming) was
dominant, command languages
evolved to program the steps
necessary to run a program.

571CS 538 Spring 2002
©

JCL
One of the most widely used
command languages was IBM’s JCL
(Job Control Language). It was
designed to “program” a batch
operating system. It directed the steps
required to put together a program
and run it. A JCL program
 1. Identified your job to the system.
 2. Directed the execution of the

program(s).
 3. Described the devices (readers,

printers, etc.) and data needed by
 the program(s).
The following example demonstrates
the JCL necessary to run an assembler
language program. The job’s name is

572CS 538 Spring 2002
©

MYPROG, and it belongs to Clem
Kaddiddlehopper who wants to have
the output returned to room 222.

//MYPROG JOB, ’CLEM
KADDIDDLEHOPPER’,TIME=(0,5)

/*JOBPARM ROOM=222
//STEP1 EXEC ASMHCG
//ASM.SYSIN DD *
[assembler source deck]
/*
//GO.DATA DD *
[data deck]
/*

573CS 538 Spring 2002
©

Shell Scripts
By today’s standards JCL is crude
indeed, but it did establish the notion
of a specialized programming
language used to “program” the steps
of an operating system. These ideas
evolved into the far more powerful
shell scripts used by systems like Unix.
Many utility programs provided by
Unix (and other operating systems)
are not conventional programs
compiled from C or C++. Instead, they
are small shell scripts that tie
together existing programs into new
and useful forms.

574CS 538 Spring 2002
©

Here is a typical Unix shell script:
wl - run word count,
then print (lpr) a set of files

#
Usage: wl file1 [file2] ...
set T=/tmp/wl.$$ # temporary file
wc -l $* > $T # get line counts
lpr $T $* # print line counts,
then files
rm $T # remove temporary file

Shell scripts are useful because they
are more direct and concise than
ordinary C or C++ programs.
Experienced Unix programmers prefer
to build a new utility from existing
ones rather than from scratch. It’s
much easier, faster, and far less error
prone. Other scripting languages, like
Python, can be used in shell scripts.

575CS 538 Spring 2002
©

JavaScript and VBScript
In the HTML that implements web
pages it is often necessary to perform
simple computations. You could, of
course, write a Java applet, and call it,
but this may be overkill.
Instead, you can use a simple
scripting language that is directly
executable by a web browser. Two
major web-oriented scripting
languages are JavaScript (by Sun
Microsystems) and VBScript (by
Microsoft).
JavaScript is not full Java; it is a
distinct scripting language based
(loosely) on Java. Similarly, VBScript
isn’t full Visual Basic, its a language
based on it.

576CS 538 Spring 2002
©

Let’s look at a simple JavaScript script
that counts the Wednesdays in a
month (if that’s of interest to you!)
<SCRIPT LANGUAGE="JavaScript">
<!-- Begin
var now = new Date();
var month = now.getMonth();
var date = now.getDate();
var day = now.getDay();
var year = now.getYear();
m = new Array("January","February",
"March","April","May","June","July",
"August","September","October",
"November","Decemeber");
d = new Array("Sunday","Monday",
"Tuesday","Wednesday","Thursday",
"Friday","Saturday");
if (year < 2000) year = year + 1900;
//End of Month Calculations
var monarr = new Array(31, 28, 31,
30, 31, 30, 31, 31, 30, 31, 30, 31);
// check for leap year
if (((year % 4 == 0) && (year % 100
!= 0)) || (year % 400 == 0))
monarr[1] = "29";

577CS 538 Spring 2002
©

//Finds the First Day for this Month
while (date != 1){
date = date - 1;
day = day - 1;
if (day < 0) day = day + 7;
}
//Count # of Wed in this month
weekday = 0;
while (date != monarr[month]){
date = date + 1;
day = day + 1;
if (day > 6)
day = 7 - day;
if (d[day] == "Wednesday")
weekday = weekday + 1;
}
//Fix For Months beginning on a Wed
if (d[day] == "Wednesday") weekday =
weekday + 1;
document.write (m[month] +
" contain s " + weekda y + " " + d[3] +
"s");// End -->
</script>

578CS 538 Spring 2002
©

Like most scripting languages, in
JavaScript there are no variable type
declarations; types are dynamic.
Control structures and expressions
look like those found in Java. Though
not shown, functions are included.
The idea is to make it easy to add a
bit of computation, while retaining
most of the concepts and notation of
conventional programming
languages.

579CS 538 Spring 2002
©

Python
One of the newest and most
innovative scripting languages is
Python, developed by Guido van
Rossum in the mid-90s. Python is
named after the BBC “Monty Python”
television series.
Python blends the expressive power
and flexibility of earlier scripting
languages with the power of object-
oriented programming languages.
It offers a lot to programmers:
• An interactive development mode as

well as an executable “batch” mode
for completed programs.

• Very reasonable execution speed. Like
Java, Python programs are compiled.
Also like Java, the compiled code is in

580CS 538 Spring 2002
©

an intermediate language for which
an interpreter is written. Like Java
this insulates Python from many of
the vagaries of the actual machines
on which it runs, giving it portability
of an equivalent level to that of Java.
Unlike Java, Python retains the
interactivity for which interpreters
are highly prized.

• Python programs require no
compilation or linking. Nevertheless,
the semi-compiled Python program
still runs much faster than its
traditionally interpreted rivals such as
the shells, awk and perl.

• Python is freely available on almost
all platforms and operating systems
(Unix, Linux, Windows, MacOs, etc.)

581CS 538 Spring 2002
©

• Python is completely object oriented.
It comes with a full set of objected
oriented features.

• Python presents a first class object
model with first class functions and
multiple inheritance. Also included
are classes, modules, exceptions and
late (run-time) binding.

• Python allows a clean and open
program layout. Python code is less
cluttered with the syntactic “noise”
of declarations and scope definitions.
Scope in a Python program is defined
by the indentation of the code in
question. Python thus breaks with
current language designs in that
white space has now once again
acquired significance.

582CS 538 Spring 2002
©

• Like Java, Python offers automated
memory management through run-
time reference counting and garbage
collection of unreferenced objects.

• Python can be embedded in other
products and programs as a control
language.

• Python’s interface is well exposed and
is reasonably small and simple.

• Python’s license is truly public.
Python programs can be used or sold
without copyright restrictions.

• Python is extendable. You can
dynamically load compiled Python,
Python source, or even dynamically
load new machine (object) code to
provide new features and new
facilities.

583CS 538 Spring 2002
©

• Python allows low-level access to its
interpreter. It exposes its internal
plumbing to a significant degree to
allow programs to make use of the
way the plumbing works.

• Python has a rich set of external
library services available. This
includes, network services, a GUI API
(based on tcl/Tk), Web support for
the generation of HTML and the CGI
interfaces, direct access to databases,
etc.

584CS 538 Spring 2002
©

Using Python
Python may be used in either
interactive or batch mode.
In interactive mode you start up the
Python interpreter and enter
executable statements. Just naming a
variable (a trivial expression)
evaluates it and echoes its value.
For example (>>> is the Python
interactive prompt):
>>> 1
1

>>> a=1

>>> a
1

>>> b=2.5

>>> b
2.5

585CS 538 Spring 2002
©

>>> a+b
3.5

>>> print a+b
3.5

You can also incorporate Python
statements into a file and execute
them in batch mode. One way to do
this is to enter the command
python file.py

where file.py contains the Python
code you want executed. Be careful
though; in batch mode you must use
a print (or some other output
statement) to force output to be
printed. Thus
1

a=1

a

586CS 538 Spring 2002
©

b=2.5

b

a+b

print a+b

when run in batch mode prints only
3.5 (the output of the print
statement).
You can also run Python programs as
Unix shell scripts by adding the line
#! /usr/bin/env python
to the head of your Python file.
(Since # begins Python comments,
you can also feed the same
augmented file directly to the Python
interpreter)

587CS 538 Spring 2002
©

Python Command Format
In Python, individual primitive
commands and expressions must
appear on a single line.
This means that
 a = 1

 +b

does not assign 1+b to a! Rather, it
assigns 1 to a, then evaluates +b.
If you wish to span more than one
line, you must use \ to escape the
line:
a = 1 \

 +b

is equivalent to
a = 1 +b

588CS 538 Spring 2002
©

Compound statements, like if
statements and while loops, can span
multiple lines, but individual
statements within an if or while (if
they are primitive) must appear one a
single line.

Why this restriction?
With it, ; ’s are mostly unnecessary!
A ; at the end of a statement is legal
but usually unnecessary, as the end-
of-line forces the statement to end.
You can use a ; to squeeze more than
one statement onto a line, if you
wish:
a=1; b=2 ; c=3

589CS 538 Spring 2002
©

Identifiers and Reserved Words
Identifiers look much the same as in
most programming languages. They
are composed of letters, digits and
underscores. Identifiers must begin
with a letter or underscore. Case is
significant. As in C and C++,
identifiers that begin with an
underscore often have special
meaning.

Python contains a fairly typical set of
reserved words:
and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass
def finally in print

590CS 538 Spring 2002
©

Numeric Types
There are four numeric types:
1. Integers, represented as a 32 bit (or

longer) quantity. Digits sequences
(possibly) signed are integer literals:
1 -123 +456

2. Long integers, of unlimited precision.
An integer literal followed by an l or
L is a long integer literal:
12345678900000000000000L

3. Floating point values, represented as a
64 bit floating point number. Literals
are of fixed decimal or exponential
form:
123.456 1e10 6.0231023

4. Complex numbers, represented as a
pair of floating point numbers. In
complex literals j or J is used to

591CS 538 Spring 2002
©

denote the imaginary part of the
complex value:

1.0+2.0j -22.1j 10e10J+20.0

There is no character type. A literal
like 'a' or "c" denotes a string of
length one.

There is no boolean type. A zero
numeric value (any form), or None
(the equivalent of void) or an empty
string, list, tuple or dictionary is
treated as false; other values are
treated as true.
Hence
 "abc" and "def"

is treated as true in an if , since both
strings are non-empty.

592CS 538 Spring 2002
©

Arithmetic Operators
Op Description
** Exponentiation
- Unary plus
+ Unary minus
~ Bit-wise complement

 (int or long only)
* Multiplication
/ Division
% Remainder
- Binary plus
+ Binary minus
<< Bit-wise left shift (int or long only)
>> Bit-wise right shift (int or long only)
& Bit-wise and (int or long only)
| Bit-wise or (int or long only)
^ Bit-wise Xor (int or long only)
< Less than
> Greater than

593CS 538 Spring 2002
©

>= Greater than or equal
<= Less than or equal
== Equal
!= Not equal
and Boolean and
or Boolean or
not Boolean not

594CS 538 Spring 2002
©

Operator Precedence Levels
Listed from lowest to highest:
or Boolean OR
and Boolean AND
not Boolean NOT
<, <=, >, >=, <>, !=, == Comparisons
| Bitwise OR
^ Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and subtraction
*, /, % Multiplication, division,

remainder
** Exponentiation
+, - Positive, negative (unary)
~ Bitwise not

595CS 538 Spring 2002
©

Arithmetic Operator Use
Arithmetic operators may be used
with any arithmetic type, with
conversions automatically applied.
Bit-wise operations are restricted to
integers and long integers. The result
type is determined by the “generality”
of the operands. (Long is more
general than int, float is more general
than both int and long, complex is
the most general numeric type). Thus
>>> 1+2
3

>>> 1+111L
112L

>>> 1+1.1
2.1

>>> 1+2.0j
(1+2j)

596CS 538 Spring 2002
©

Unlike almost all other programming
languages, relational operators may
be “chained” (as in standard
mathematics).
Therefore
 a > b > c

means (a > b) and (b > c)

597CS 538 Spring 2002
©

Assignment Statements
In Python assignment is a statement
not an expression.
Thus
 a+(b=2)

is illegal.
Chained assignments are allowed:
a = b = 3

Since Python is dynamically typed,
the type (and value) associated with
an identifier can change because of
an assignment:
>>> a = 0

>>> print a
0

>>> a = a + 0L

>>> print a

598CS 538 Spring 2002
©

0L

>>> a = a + 0.0

>>> print a
0.0

>>> a = a + 0.0J

>>> print a
0j

599CS 538 Spring 2002
©

If and While Statements
Python contains if and while
statements that are fairly similar to
those found in C and Java.
There are some significant differences
though.
A line that contains an if , else or
while ends in a “: ”. Thus we might
write:
 if a > 0:

 b = 1

Moreover the indentation of the then
part is significant! You don’t need {
and } in Python because all
statements indented at the same level
are assumed to be part of the same
block.

600CS 538 Spring 2002
©

In the following Python statements
if a>0:

 b=1

 c=2

d=3

the assignments to b and c constitute
then part; the assignment to d
follows the if statement, and is
independent of it. In interactive mode
a blank line is needed to allow the
interpreter to determine where the if
statement ends; this blank line is not
needed in batch mode.

601CS 538 Spring 2002
©

The if Statement
The full form of the if statement is
if expression:

 statement(s)

elif expression:

 statement(s)

...

else:

 statement(s)

Note those pesky : ’s at the end of the
if , elif and else lines. The
expressions following the if and
optional elif lines are evaluated
until one evaluates to true. Then the
following statement(s), delimited by
indentation, are executed. If no
expression evaluates to true, the
statements following the else are
executed.

602CS 538 Spring 2002
©

Use of else and elif are optional; a
“bare” if may be used.
If any of the lists of statements is to
be null, use pass to indicate that
nothing is to be done.
For example
if a>0:

 b=1

elif a < 0:

 pass

else

 b=0

This if sets b to 1 if a is > 0; it sets b
to 0 if a == 0 , and does nothing if a <
0.

603CS 538 Spring 2002
©

While Loops
Python contains a fairly conventional
while loop:

while expression:

 body

Note the “: ” that ends the header
line. Also, indentation delimits the
body of the loop; no braces are
needed. For example,
>>> a=0; b=0

>>> while a < 5:

... b = b+a**2

... a= a+1

...

>>> print a,b
5 30

604CS 538 Spring 2002
©

Break, Continue and Else in
Loops

Like C, C++ and Java, Python allows
use of break within a loop to force
loop termination. For example,
>>> a=1

>>> while a < 10:

... if a+a == a**2:

... break

... else:

... a=a+1

...

>>> print a
2

605CS 538 Spring 2002
©

A continue may be used to force the
next loop iteration:
>>> a=1

>>> while a < 100:

... a=a+1

... if a%2==0:

... continue

... a=3*a

...

>>> print a
105

606CS 538 Spring 2002
©

Python also allows you to add an
else clause to a while (or for) loop.
The syntax is
while expression:

 body

else:

 statement(s)

The else statements are executed
when the termination condition
becomes false, but not when the loop
is terminated with a break . As a
result, you can readily program
“search loops” that need to handle
the special case of search failure:

607CS 538 Spring 2002
©

>>> a=1

>>> while a < 1000:

... if a**2 == 3*a-1:

... print "winner: ",a

... break

... a=a+1

... else:

... print "No match"

...

No match

