
608CS 538 Spring 2002
©

Sequence Types
Python includes three sequence types:
strings, tuples and lists. All sequence
types may be indexed, using a very
general indexing system.
Strings are sequences of characters;
tuples and lists may contain any type
or combination of types (like Scheme
lists).
Strings and tuples are immutable
(their components may not be
changed). Lists are mutable, and be
updated, much like arrays.
Strings may be delimited by either a
single quote (') or a double quote (")
or even a triple quote (''' or """). A
given string must start and stop with
the same delimiter. Triply quoted
strings may span multiple lines. There

609CS 538 Spring 2002
©

is no character type or value;
characters are simply strings of
length 1. Legal strings include
'abc' "xyz" '''It's OK!'''

Lists are delimited by “[“ and “] ”.
Empty (or null lists) are allowed. Valid
list literals include
 [1,2,3] ["one",1]
 [['a'],['b'],['c']] []

Tuples are a sequence of values
separated by commas. A tuple may be
enclosed within parentheses, but this
isn’t required. A empty tuple is () . A
singleton tuple ends with a comma
(to distinguish it from a simple scalar
value).
Thus (1,) or just 1, is a valid tuple
of length one.

610CS 538 Spring 2002
©

Indexing Sequence Types
Python provides a very general and
powerful indexing mechanism. An
index is enclosed in brackets, just like
a subscript in C or Java. Indexing
starts at 0.
Thus we may have
>>> 'abcde'[2]
'c'

>>> [1,2,3,4,5][1]
2

>>> (1.1,2.2,3.3)[0]
1.1

Using an index that’s too big raises an
IndexError exception:
>>> 'abc'[3]
IndexError: string index out of
range

611CS 538 Spring 2002
©

Unlike most languages, you can use
negative index values; these simply
index from the right:
>>> 'abc'[-1]
'c'

>>> [5,4,3,2,1][-2]
2

>>> (1,2,3,4)[-4]
1

You may also access a slice of a
sequence value by supplying a range
of index values. The notation is

data[i:j]

which selects the values in data that
are >=i and < j . Thus
>>> 'abcde'[1:2]
'b'

>>> 'abcde'[0:3]
'abc'

612CS 538 Spring 2002
©

>>> 'abcde'[2:2]
''

You may omit a lower or upper bound
on a range. A missing lower bound
defaults to 0 and a missing upper
bound defaults to the maximum legal
index. For example,
>>> [1,2,3,4,5][2:]
[3, 4, 5]

>>> [1,2,3,4,5][:3]
[1, 2, 3]

An upper bound that’s too large in a
range is interpreted as the maximum
legal index:
>>> 'abcdef'[3:100]
'def'

You may use negative values in
ranges too—they’re interpreted as
being relative to the right end of the
sequence:

613CS 538 Spring 2002
©

>>> 'abcde'[0:-2]
'abc'

>>> 'abcdefg'[-5:-2]
'cde'

>>> 'abcde'[-3:]
'cde'

>>> 'abcde'[:-1]
'abcd'

Since arrays may be assigned to, you
may assign a slice to change several
values at once:
>>> a=[1,2,3,4]

>>> a[0:2]=[-1,-2]

>>> a
[-1, -2, 3, 4]

>>> a[2:]=[33,44]

>>> a
[-1, -2, 33, 44]

614CS 538 Spring 2002
©

The length of the value assigned to a
slice need not be the same size as the
slice itself, so you can shrink or
expand a list by assigning slices:
>>> a=[1,2,3,4,5]

>>> a[2:3]=[3.1,3.2]

>>> a
[1, 2, 3.1, 3.2, 4, 5]

>>> a[4:]=[]

>>> a
[1, 2, 3.1, 3.2]

>>> a[:0]=[-3,-2,-1]

>>> a
[-3, -2, -1, 1, 2, 3.1, 3.2]

615CS 538 Spring 2002
©

Other Operations on
Sequences

Besides indexing and slicing, a
number of other useful operations are
provided for sequence types (strings,
lists and tuples).
These include:

+ (catenation):
>>> [1,2,3]+[4,5,6]
[1, 2, 3, 4, 5, 6]

>>> (1,2,3)+(4,5)
(1, 2, 3, 4, 5)

>>> (1,2,3)+[4,5]
TypeError: illegal argument
type for built-in operation

>>> "abc"+"def"
'abcdef'

616CS 538 Spring 2002
©

• * (Repetition):
>>> 'abc'*2
'abcabc'

>>> [3,4,5]*3
[3, 4, 5, 3, 4, 5, 3, 4, 5]

• Membership (in , not in)
>>> 3 in [1,2,3,4]
1

>>> 'c' in 'abcde'
1

• max and min :
>>> max([3,8,-9,22,4])
22

>>> min('aa','bb','abc')
'aa'

617CS 538 Spring 2002
©

Operations on Lists
As well as the operations available for
all sequence types (including lists),
there are many other useful
operations available for lists. These
include:
• count (Count occurrences of an item

in a list):
>>> [1,2,3,3,21].count(3)
2

• index (Find first occurrence of an
item in a list):

>>> [1,2,3,3,21].index(3)
2

>>> [1,2,3,3,21].index(17)
ValueError: list.index(x): x
not in list

618CS 538 Spring 2002
©

• remove (Find and remove an item
from a list):

>>> a=[1,2,3,4,5]
>>> a.remove(4)
>>> a
[1, 2, 3, 5]

>>> a.remove(17)
ValueError: list.remove(x): x
not in list

• pop (Fetch and remove i-th element
of a list):

>>> a=[1,2,3,4,5]
>>> a.pop(3)
4

>>> a
[1, 2, 3, 5]

>>> a.pop()
5

>>> a
[1, 2, 3]

619CS 538 Spring 2002
©

• reverse a list:
>>> a=[1,2,3,4,5]
>>> a.reverse()
>>> a
[5, 4, 3, 2, 1]

• sort a list:
>>> a=[5,1,4,2,3]
>>> a.sort()
>>> a
[1, 2, 3, 4, 5]

• Create a range of values:
>>> range(1,5)
[1, 2, 3, 4]

>>> range(1,10,2)
[1, 3, 5, 7, 9]

620CS 538 Spring 2002
©

Dictionaries
Python also provides a dictionary type
(sometimes called an associative
array). In a dictionary you can use a
number (including a float or
complex), string or tuple as an index.
In fact any immutable type can be an
index (this excludes lists and
dictionaries).
An empty dictionary is denoted { } .
A non-empty dictionary may be
written as
{ key 1:value 1, key 2:value 2, ... }

For example,
c={ 'bmw':540, 'lexus':'sc 430',

 'porsche':'boxster'}

621CS 538 Spring 2002
©

You can use a dictionary much like an
array, indexing it using keys, and
updating it by assigning a new value
to a key:
>>> c['bmw']
540

>>> c['bmw']='m5'
>>> c['honda']='accord'

You can delete a value using del :
>>> del c['honda']
>>> c['honda']

KeyError: honda

622CS 538 Spring 2002
©

You can also check to see if a given
key is valid, and also list all keys,
values, or key-value pairs in use:
>>> c.has_key('edsel')
0

>>> c.keys()
['bmw', 'porsche', 'lexus']

>>> c.values()
['m5', 'boxster', 'sc 430']

>>> c.items()
[('bmw', 'm5'), ('porsche',
'boxster'), ('lexus', 'sc 430')]

623CS 538 Spring 2002
©

For Loops
In Python’s for loops, you don’t
explicitly control the steps of an
iteration. Instead, you provide a
sequence type (a string, list or
sequence), and Python automatically
steps through the values.
Like a while loop, you must end the
for loop header with a “: ” and the
body is delimited using indentation.
For example,
>>> for c in 'abc':

... print c

...

a

b

c

624CS 538 Spring 2002
©

The range function, which creates a
list of values in a fixed range is useful
in for loops:
>>> a=[5,2,1,4]

>>> for i in range(0,len(a)):

... a[i]=2*a[i]

...

>>> print a
[10, 4, 2, 8]

625CS 538 Spring 2002
©

You can use an else with for loops
too. Once the values in the specified
sequence are exhausted, the else is
executed unless the for is exited
using a break . For example,
 for i in a:

 if i < 0:

 print 'Neg val:',i

 break

 else:

 print 'No neg vals'

626CS 538 Spring 2002
©

Function Definitions
Function definitions are of the form
def name(args):
 body

The symbol def tells Python that a
function is to be defined. The
function is called name and args is a
tuple defining the names of the
function’s arguments. The body of
the function is delimited using
indentation. For example,
def fact(n):

 if n<=1:

 return 1

 else:

 return n*fact(n-1)

>>> fact(5)
120

>>> fact(20L)

627CS 538 Spring 2002
©

2432902008176640000L

>>> fact(2.5)
3.75

>>> fact(2+1J)
(1+3j)

Scalar parameters are passed by
value; mutable objects are allocated
in the heap and hence are passed (in
effect) by reference:
>>> def asg(ar):

... a[1]=0

... print ar

...

>>> a=[1,2,3,4.5]

>>> asg(a)
[1, 0, 3, 4.5]

628CS 538 Spring 2002
©

Arguments may be given a default
value, making them optional in a call.
Optional parameters must follow
required parameters in definitions.
For example,
 >>> def expo(val,exp=2):

... return val**exp

...

>>> expo(3,3)
27

>>> expo(3)
9

>>> expo()
TypeError: not enough arguments;
expected 1, got 0

629CS 538 Spring 2002
©

A variable number of arguments is
allowed; you prefix the last formal
parameter with a * ; this parameter is
bound to a tuple containing all the
actual parameters provided by the
caller:
>>> def sum(*args):
... sum=0
... for i in args:
... sum=sum+i
... return sum
...

>>> sum(1,2,3)
6

>>> sum(2)
2

>>> sum()
0

630CS 538 Spring 2002
©

You may also use the name of formal
parameters in a call, making the order
of parameters less important:
>>> def cat(left="[",body="",

 right="]"):

... return left+body+right

...

>>> cat(body='xyz');
'[xyz]'

>>> cat(body='hi there!'
 ,left='--[')
'--[hi there!]'

631CS 538 Spring 2002
©

Scoping Rules in Functions
Each function body has its own local
namespace during execution. An
identifier is resolved (if possible) in
the local namespace, then (if
necessary) in the global namespace.
Thus
>>> def f():

... a=11

... return a+b

...

>>> b=2;f()
13

>>> a=22;f()
13

>>> b=33;f()
44

632CS 538 Spring 2002
©

Assignments are to local variables,
even if a global exists. To force an
assignment to refer to a global
identifier, you use the declaration

global id

which tells Python that in this
function id should be considered
global rather than local. For example,
>>> a=1;b=2

>>> def f():

... global a

... a=111;b=222

...

>>> f();print a,b
111 2

633CS 538 Spring 2002
©

Other Operations on Functions
Since Python is interpreted, you can
dynamically create and execute
Python code.
The function eval(string)
interprets string as a Python
expression (in the current execution
environment) and returns what is
computed. For example,
>>> a=1;b=2

>>> eval('a+b')
3

634CS 538 Spring 2002
©

exec(string) executes string as
arbitrary Python code (in the current
environment):
>>> a=1;b=2

>>> exec('for op in "+-*/":
print(eval("a"+op+"b"))')
3

-1

2

0

execfile(string) executes the
contents of the file whose pathname
is specified by string . This can be
useful in loading an existing set of
Python definitions.

635CS 538 Spring 2002
©

The expression
lambda args: expression

creates an anonymous function with
args as its argument list and
expression as it body. For example,
>>> (lambda a:a+1)(2)
3

And there are definitions of map,
reduce and filter to map a
function to a list of values, to reduce
a list (using a binary function) and to
select values from a list (using a
predicate):
>>> def double(a):

... return 2*a;

...

>>> map(double,[1,2,3,4])
[2, 4, 6, 8]

636CS 538 Spring 2002
©

>>> def sum(a,b):

... return a+b

...

>>> reduce(sum,[1,2,3,4,5])
15

>>> def even(a):

... return not(a%2)

...

>>> filter(even,[1,2,3,4,5])
[2, 4]

