Sequence Types

Python includes three sequence types:
strings, tuples and lists. All sequence
types may be indexed, using a very
general indexing system.

Strings are sequences of characters;
tuples and lists may contain any type
or combination of types (like Scheme
lists).

Strings and tuples are immutable
(their components may not be
changed). Lists are mutable, and be
updated, much like arrays.

Strings may be delimited by either a
single quote (*) or a double quote ()
or even a triple quote (" or™). A
given string must start and stop with
the same delimiter. Triply quoted
strings may span multiple lines. There

S 538 Spring 2002

608

Indexing Sequence Types

Python provides a very general and
powerful indexing mechanism. An
index is enclosed in brackets, just like
a subscript in C or Java. Indexing
starts at 0.

Thus we may have
>>> 'abcde'[2]

o

>>> [1,2,3,4,5][1]

2

>>> (1.1,2.2,3.3)[0]

1.1

Using an index that’s too big raises an
IndexError exception:

>>> 'abc'[3]

IndexError: string index out of

range

€S 538 Spring 2002

610

is no character type or value;
characters are simply strings of
length 1. Legal strings include
‘abc’ "xyz" "'It's OK!"

Lists are delimited by “[“ and “] "
Empty (or null lists) are allowed. Valid
list literals include

[1,2,3] ['one" 1]

[[a].[oL.IeTl

Tuples are a sequence of values
separated by commas. A tuple may be
enclosed within parentheses, but this
isn’t required. A empty tupleis () . A
singleton tuple ends with a comma
(to distinguish it from a simple scalar
value).

Thus (1,) orjust 1, isa valid tuple
of length one.

CS 538 Sprin

g 2005 609

Unlike most languages, you can use
negative index values; these simply
index from the right:

>>> 'abc'[-1]

o

>>> [5,4,3,2,1][-2]

2

>>> (1,2,3,4)[-4]

1

You may also access a slice of a
sequence value by supplying a range
of index values. The notation is

datali:]]
which selects the values in data that
are >=i and <j . Thus
>>> ‘abcde'[1:2]
b
>>> ‘'abcde'[0:3]
‘abc’

CS 538 Sprin,

g 2007 611

>>> ‘abcde'[2:2]

You may omit a lower or upper bound
on a range. A missing lower bound
defaults to O and a missing upper
bound defaults to the maximum legal
index. For example,

>>> [1,2,3,4,5][2:]

[3, 4, 5]

>>> [1,2,3,4,5][:3]

[1,2,3]

An upper bound that’s too large in a
range is interpreted as the maximum
legal index:

>>> 'abcdef[3:100]

‘def'

You may use negative values in
ranges too—they’re interpreted as
being relative to the right end of the
sequence:

>>> ‘abcde'[0:-2]
‘abc’

>>
‘cde’
>>

\

'‘abcdefg'[-5:-2]

\

'‘abcde’[-3:]

‘cde’

>>> ‘abcde'[:-1]

‘abcd'

Since arrays may be assigned to, you
may assign a slice to change several
values at once:

>>> a=[1,2,3,4]

>>> a[0:2]=[-1,-2]

>>> a

[-1, -2, 3, 4]

>>> a[2:]=[33,44]

>>> a

[-1, -2, 33, 44]

\

CS 538 Sprin:

g 2005

612 €S 538 Spring 2007 613

The length of the value assigned to a
slice need not be the same size as the
slice itself, so you can shrink or
expand a list by assigning slices:

>>> a=[1,2,3,4,5]

>>> a[2:3]=[3.1,3.2]

>>> a
[1,2,3.1,3.2,4,5]
>>> a[4]=]]

>>> a
[1,2,3.1,3.2]

>>> a[:0]=[-3,-2,-1]
>>> g

[-3,-2,-1, 1, 2, 3.1, 3.2]

Other Operations on
Sequences

Besides indexing and slicing, a
number of other useful operations are
provided for sequence types (strings,
lists and tuples).

These include:
+ (catenation):
>>> [1,2,3]+[4,5,6]
[1,2,3,4,5, 6]
>>> (1,2,3)+(4,5)
1,2,3,4,5)
>>> (1,2,3)+[4,5]
TypeError: illegal argument
type for built-in operation
>>> "abc"+"def"
‘abcdef'

€S 538 Spring 2002

614 €S 538 Spring 2002 615

- * (Repetition):
>>> 'abc™2
‘abcabc’
>>> [3,4,5]*3
[3,4,5,3,4,5, 3,4, 5]

- Membership (in , notin)
>>> 3in[1,2,3,4]
1
>>> 'c' in ‘abcde’
1

- max and min:
>>> max([318’_912214])
22
>>> min(‘aa’,'bb’,'abc’)
2

S 538 Spring 2002 616

- remove (Find and remove an item
from a list):
>>> a=[1,2,3,4,5]
>>> a.remove(4)
>>> a
[1,2,3,5]
>>> a.remove(17)
ValueError: list.remove(x): x
not in list
. pop (Fetch and remove i-th element
of a list):
>>> a=[1,2,3,4,5]
>>> a.pop(3)
4
>>> a
[1,2,3,5]

>>> a.pop()
5

>>> a
[1, 2, 3]

€S 538 Spring 2002 618

Operations on Lists

As well as the operations available for
all sequence types (including lists),
there are many other useful
operations available for lists. These
include:

. count (Count occurrences of an item
in a list):
>>> [1,2,3,3,21].count(3)
2
- index (Find first occurrence of an
item in a list):
>>> [1,2,3,3,21].index(3)
2
>>> [1,2,3,3,21].index(17)

ValueError: list.index(x): x
not in list

€S 538 Spring 2007

617

. reverse a list:
>>> a=[1,2,3,4,5]
>>> a.reverse()
>>> a

[5,4,3,2,1]
. sort a list:
>>> a=[5,1,4,2,3]

>>> a.sort()
>>> a

[1,2,3,4,5]

. Create a range of values:
>>> range(1,5)
[1,2,3,4]
>>> range(1,10,2)
[1,3,5,7,9]

S 538 Spring 200

619

Dictionaries

Python also provides a dictionary type
(sometimes called an associative
array). In a dictionary you can use a
number (including a float or
complex), string or tuple as an index.
In fact any immutable type can be an
index (this excludes lists and
dictionaries).

An empty dictionary is denoted {} .
A non-empty dictionary may be
written as

{key :value q,key ,wvalue »,...}

For example,

c={ 'bmw"540, 'lexus"'sc 430",
'‘porsche’:'boxster'}

S 538 Spring 2002

620

You can also check to see if a given
key is valid, and also list all keys,
values, or key-value pairs in use:
>>> c.has_key(‘edsel’)

0

>>> c.keys()

[bmw', ‘porsche’, 'lexus']

>>> c.values()

['m5', 'boxster’, 'sc 430']

>>> c.items()

[(Cbmw', 'm5"), (‘porsche’,

'boxster’), (lexus’, 'sc 430"]

€S 538 Spring 2002

You can use a dictionary much like an
array, indexing it using keys, and
updating it by assigning a new value
to a key:

>>> c['bmw]

540

>>> c['bmw']='m5'

>>> c['honda']="accord'

You can delete a value using del :
>>> del c['honda’]

>>> c['honda’]

KeyError: honda

€S 538 Spring 2007

621

For Loops

In Python’s for loops, you don’t
explicitly control the steps of an
iteration. Instead, you provide a
sequence type (a string, list or
sequence), and Python automatically
steps through the values.

Like a while loop, you must end the
for loop header with a “: ” and the
body is delimited using indentation.
For example,
>>> for ¢ in 'abc":

print ¢

S 538 Spring 200

623

The range function, which creates a
list of values in a fixed range is useful
in for loops:

>>> a=[5,2,1,4]

>>> foriin range(0,len(a)):

afi]=2*a[i]
>>> print a
[10, 4, 2, 8]

You can use an else with for loops
too. Once the values in the specified
sequence are exhausted, the else is
executed unless the for is exited
using a break . For example,
foriina:
ifi <O:

print ‘Neg val:',i

break
else:

print ‘No neg vals'

S 538 Spring 2002

€S 538 Spring 2007 625

Function Definitions

Function definitions are of the form
def name(args):
body
The symbol def tells Python that a
function is to be defined. The
function is called name and args is a
tuple defining the names of the
function’s arguments. The body of
the function is delimited using
indentation. For example,
def fact(n):
if n<=1:
return 1
else:
return n*fact(n-1)
>>> fact(5)
120
>>> fact(20L)

2432902008176640000L
>>> fact(2.5)
3.75
>>> fact(2+1J)
(1+3))
Scalar parameters are passed by
value; mutable objects are allocated
in the heap and hence are passed (in
effect) by reference:
>>> def asg(ar):
a[1]=0
print ar

>>> a=[1,2,3,4.5]
>>> asg(a)
[1,0, 3, 4.5]

€S 538 Spring 2002

S 538 Spring 200 627

Arguments may be given a default
value, making them optional in a call.
Optional parameters must follow
required parameters in definitions.
For example,
>>> def expo(val,exp=2):

return val**exp

>>> expo(3,3)
27

>>> expo(3)

9

>>> expo()

TypeError: not enough arguments;
expected 1, got 0

S 538 Spring 2002 628

You may also use the name of formal
parameters in a call, making the order
of parameters less important:
>>> def cat(left="[",body="",
right="1"):
return left+body+right

>>> cat(body="'xyz");

xyzl

>>> cat(body="hi there!"
Jleft="--[)

"--[hi there!]'

€S 538 Spring 2002 630

A variable number of arguments is
allowed; you prefix the last formal
parameter with a *; this parameter is
bound to a tuple containing all the
actual parameters provided by the
caller:
>>> def sum(*args):

sum=0

foriin args:

sum=sum-i
return sum

>>> sum(1,2,3)
6

>>> sum(2)

2

>>> sum()

0

€S 538 Spring 2007 629

Scoping Rules in Functions

Each function body has its own local
namespace during execution. An
identifier is resolved (if possible) in
the local namespace, then (if
necessary) in the global namespace.

Thus

>>> def f():
a=11
return a+b

>>> p=2;f()
13
>>> a=22;f()
13
>>> b=33;f()
44

S 538 Spring 200 631

Assignments are to local variables,
even if a global exists. To force an
assignment to refer to a global

identifier, you use the declaration

global id

which tells Python that in this
function id should be considered
global rather than local. For example,
>>> a=1:;b=2
>>> def f():

global a

a=111;b=222

>>> f();print a,b
1112

CS 538 Sprin:

g 2005

632

exec(string) executes string as
arbitrary Python code (in the current
environment):

>>> a=1;b=2

>>> exec(‘for op in "+-*/"
print(eval("a"+op+"b"))")

3

-1

2

0

execfile(string) executes the
contents of the file whose pathname
is specified by string . This can be
useful in loading an existing set of
Python definitions.

€S 538 Spring 2002

Other Operations on Functions

Since Python is interpreted, you can
dynamically create and execute
Python code.

The function eval(string)

interprets string as a Python
expression (in the current execution
environment) and returns what is
computed. For example,

>>> a=1:;b=2

>>> eval(‘a+b’)

3

€S 538 Spring 2007

633

The expression
lambda args: expression

creates an anonymous function with
args as its argument list and

expression as it body. For example,
>>> (lambda a:a+1)(2)
3

And there are definitions of map,
reduce and fiter ~ to map a
function to a list of values, to reduce
a list (using a binary function) and to
select values from a list (using a
predicate):
>>> def double(a):

return 2*a;

>>> map(double,[1,2,3,4])
[2, 4,6, 8]

S 538 Spring 200

635

>>> def sum(a,b):
return a+b

>>> reduce(sum,[1,2,3,4,5])
15
>>> def even(a):

return not(a%2)

>>> filter(even,[1,2,3,4,5])
[2, 4]

S 538 Spring 2002

636

