Sequence Types

Python includes three sequence types:
strings, tuples and lists. All sequence
types may be indexed, using a very
general indexing system.

Strings are sequences of characters;
tuples and lists may contain any type
or combination of types (like Scheme
lists).

Strings and tuples are immutable
(their components may not be
changed). Lists are mutable, and be
updated, much like arrays.

Strings may be delimited by either a
single quote (* ) or a double quote (")
or even a triple quote (™ or™ ). A
given string must start and stop with
the same delimiter. Triply quoted
strings may span multiple lines. There

CS 538 Spring 200%°

608



IS no character type or value;
characters are simply strings of
length 1. Legal strings include

‘abc' "xyz" "It's OK!"™

Lists are delimited by “[ “ and 1"
Empty (or null lists) are allowed. Valid
list literals include

[1,2,3] ['one",1]

[[al.lb'L.IcT

Tuples are a sequence of values
separated by commas. A tuple may be
enclosed within parentheses, but this
Isn’t required. A empty tupleis () . A
singleton tuple ends with a comma
(to distinguish it from a simple scalar
value).

Thus (1,) orjust 1, Is a valid tuple
of length one.

CS 538 Spring 200%° 609



Indexing Sequence Types

Python provides a very general and
powerful indexing mechanism. An
Index Is enclosed In brackets, just like
a subscript in C or Java. Indexing
starts at O.

Thus we may have
>>> 'abcde’[2]

=

>>> [1,2,3,4,5][1]
2

>>> (1.1,2.2,3.3)[0]
1.1

Using an index that’s too big raises an
IndexError  exception:
>>> 'abc'[3]

IndexError: string index out of
range

CS 538 Spring 200%°

610



Unlike most languages, you can use
negative index values; these simply
Index from the right:

>>> 'abc'[-1]

=

>>> [5,4,3,2,1][-2]

2

>>> (1,2,3,4)[-4]

1

You may also access a slice of a
sequence value by supplying a range
of index values. The notation is

data[i:j]
which selects the values in data that
are >=i and <j . Thus
>>> ‘abcde'[1:2]
b
>>> ‘abcde'[0:3]
‘abc'

CS 538 Spring 200%° 611



>>> 'abcde’'[2:2]

You may omit a lower or upper bound
on a range. A missing lower bound
defaults to O and a missing upper
bound defaults to the maximum legal
Index. For example,

>>> [1,2,3,4,5][2]

[3, 4, 5]

>>> [1,2,3,4,5][:3]

[1, 2, 3]

An upper bound that’s too large in a
range Is interpreted as the maximum

legal index:
>>> 'abcdef'[3:100]
'def’

You may use negative values in
ranges too—they’re interpreted as
being relative to the right end of the
sequence:

CS 538 Spring 200%° 612



>>> ‘abcde'[0:-2]

‘abc'

>>> 'abcdefg'[-5:-2]

'cde’

>>> 'abcde'[-3]

'cde’

>>> 'abcde'[:-1]

‘abcd’

Since arrays may be assigned to, you
may assign a slice to change several
values at once:

>>> a=[1,2,3,4]

>>> a[0:2]=[-1,-2]

>>> a

[-1, -2, 3, 4]

>>> al[2:]=[33,44]

>>> a

[-1, -2, 33, 44]

CS 538 Spring 200%°

613



T
S

ne length of the value assigned to a
Ice need not be the same size as the

S

Ice I1tself, so you can shrink or

expand a list by assigning slices:
>>> a=[1,2,3,4,5]
>>> a[2:3]=[3.1,3.2]

>>> a
[1,2,3.1,3.2, 4, 5]
>>> a[4]=]

>>> a

1, 2, 3.1, 3.2]

>>> a[.0]=[-3,-2,-1]
>>> a

[-3,-2,-1, 1,2, 3.1, 3.2]

CS 538 Spring 200%°

614



Other Operations on
Sequences

Besides indexing and slicing, a
number of other useful operations are
provided for sequence types (strings,
lists and tuples).

These include:
+ (catenation):
>>> [1,2,3]+[4,5,6]
1, 2, 3, 4,5, 6]
>>> (1,2,3)+(4,5)
(1, 2, 3,4, 5)
>>> (1,2,3)+[4,5]

TypekError: illegal argument
type for built-in operation

>>> "abC"+"def"
‘abcdef’

CS 538 Spring 200%° 615



. * (Repetition):
>>> 'abc'*2
‘abcabc'
>>> [3,4,5]*3
[3,4,5,3,4,5, 3,4, 5]

. Membership (in , not in

>>> 31in[1,2,3,4]
1
>>> 'c'In 'abcde'
1

. max and min :
>>> max([3,8,-9,22,4])
22
>>> min(‘aa’,'bb’,'abc’)
ag’

)

CS 538 Spring 200%°

616



Operations on Lists

As well as the operations available for
all sequence types (including lists),
there are many other useful
operations available for lists. These
Include:

. count (Count occurrences of an item
In a list):
>>> [1,2,3,3,21].count(3)
2

. index (Find first occurrence of an
item In a list):
>>> [1,2,3,3,21].index(3)
2
>>> [1,2,3,3,21].index(17)

ValueError: list.index(x): x
not in list

CS 538 Spring 200%°

617



. remove (FInd and remove an item
from a list):
>>> a=[1,2,3,4,5]
>>> a.remove(4)
>>> a
[1, 2, 3, 5]
>>> a.remove(l7)

ValueError: list.remove(X): X
not in list

. pop (Fetch and remove iI-th element
of a list):
>>> a=[1,2,3,4,5]
>>> a.pop(3)
4
>>> a

[1, 2, 3, 5]

>>> a.pop()
5

>>> g
[1, 2, 3]

CS 538 Spring 200%° 618



. reverse a list:

>>> a=[1,2,3,4,5]
>>> a.reverse()
>>> a

5, 4, 3, 2, 1]
. sort a list:
>>> a=[5,1,4,2,3]

>>> a.sort()
>>> a

[1, 2, 3, 4, 5]
. Create a range of values:
>>> range(l,5)
1, 2, 3, 4]
>>> range(1,10,2)
1, 3,5, 7, 9]

CS 538 Spring 200%° 619




Dictionaries

Python also provides a dictionary type
(sometimes called an associative
array). In a dictionary you can use a
number (including a float or
complex), string or tuple as an index.
In fact any immutable type can be an
Index (this excludes lists and
dictionaries).

An empty dictionary Is denoted {}

A non-empty dictionary may be
written as

{ key q:value 1,key s:wvalue »,...}

For example,

c={ 'bmw"540, 'lexus''sc 430,
'porsche':'boxster'}

CS 538 Spring 200%°

620



You can use a dictionary much like an
array, indexing it using keys, and
updating It by assigning a new value
to a key:

>>> c['bmw']

540

>>> c['bmw']='m5'

>>> c['honda']="accord'

You can delete a value using del :

>>> del c['honda’]
>>> c['honda’]
KeyError: honda

CS 538 Spring 200%° 621



You can also check to see If a given
key Is valid, and also list all keys,
values, or key-value pairs In use:

>>> c.has_key(‘edsel’)

0

>>> c.keys()

['omw', 'porsche’, 'lexus']
>>> c.values()

['m5', 'boxster’, 'sc 430']
>>> C.items()

[((‘bmw', 'm5"), (‘porsche’,
'‘boxster’), (‘lexus’, 'sc 430]

CS 538 Spring 200%° 622



For Loops

In Python’s for loops, you don’t
explicitly control the steps of an
Iteration. Instead, you provide a
sequence type (a string, list or
sequence), and Python automatically
steps through the values.

Like a while loop, you must end the
for loop header with a *: ” and the
body is delimited using indentation.
For example,

>>> for c in 'abc":
print c

@y

CS 538 Spring 200%° 623



The range function, which creates a
list of values In a fixed range is useful
In for loops:
>>> a=[b,2,1,4]
>>> for 1 in range(0,len(a)):

a[i]=2+ali]

>>> print a
[10, 4, 2, 8]

CS 538 Spring 200%° 624



You can use an else with for loops
too. Once the values In the specified
sequence are exhausted, the else Is
executed unless the for Is exited
using a break . For example,
foriin a:
If1<O0:

print 'Neg val:',i

break
else:

print 'No neg vals'

CS 538 Spring 200%° 625



Function Definitions

Function definitions are of the form

def name(args).

body
The symbol def tells Python that a
function is to be defined. The
function is called name and args IS a
tuple defining the names of the
function’s arguments. The body of
the function is delimited using
Indentation. For example,

def fact(n):

If n<=1:

return 1

else:

return n*fact(n-1)
>>> fact(5)
120
>>> fact(20L)

CS 538 Spring 200%° 626



2432902008176640000L
>>> fact(2.5)
3.75
>>> fact(2+1J)
(1+3))
Scalar parameters are passed by
value; mutable objects are allocated
In the heap and hence are passed (in
effect) by reference:
>>> def asg(ar):

a[l1]=0

print ar

>>> a=[1,2,3,4.5]
>>> asg(a)
[1, 0, 3, 4.5]

CS 538 Spring 200%°

627



Arguments may be given a default
value, making them optional in a call.
Optional parameters must follow
required parameters in definitions.
For example,

>>> def expo(val,exp=2):
return val**exp

>>> expo(3,3)
27

>>> eXxpo(3)

9

>>> expo()

TypeError: not enough arguments;
expected 1, got O

CS 538 Spring 200%° 628




A variable number of arguments Is
allowed; you prefix the last formal
parameter with a *; this parameter is
bound to a tuple containing all the
actual parameters provided by the
caller:

>>> def sum(*args):
sum=0
for 1 in args:
sum=sum-i
return sum

>>> sum(1,2,3)
6

>>> sum(2)

2

>>> sum()

0

CS 538 Spring 200%° 629




You may also use the name of formal
parameters in a call, making the order
of parameters less important:

>>> def cat(left="[",body="",
right="1"):

return left+body+right

>>> cat(body="xyz');

[xyz]
>>> cat(body="hi there!’
Jeft="--[")

'--[hi there!]’

CS 538 Spring 200%° 630



Scoping Rules in Functions

Each function body has its own local
namespace during execution. An
Identifier Is resolved (if possible) In
the local namespace, then (if
necessary) In the global namespace.

Thus

>>> def f():
a=11
return a+b

>>> p=2;f()

13

>>> a=22;f()
13

>>> p=33;f()
44

CS 538 Spring 200%° 631



Assignments are to local variables,
even If a global exists. To force an
assignment to refer to a global

Identifier, you use the declaration

global id

which tells Python that in this
function id should be considered
global rather than local. For example,
>>> a=1;b=2
>>> def f():

global a

a=111;b=222

>>> f();print a,b
111 2

CS 538 Spring 200%° 632




Other Operations on Functions

Since Python is Interpreted, you can
dynamically create and execute
Python code.

The function eval(string)

Interprets string  as a Python
expression (in the current execution
environment) and returns what is
computed. For example,

>>> a=1;b=2

>>> eval(‘atb’)

3

CS 538 Spring 200%° 633



exec(string) executes string as
arbitrary Python code (in the current
environment):

>>> a=1;b=2

>>> exec('for op in "+-*/"
print(eval("a"+op+"b"))")

3

-1

2

0

execfile(string) executes the
contents of the file whose pathname
IS specified by string . This can be
useful in loading an existing set of
Python definitions.

CS 538 Spring 200%° 634



The expression
lambda args: expression

creates an anonymous function with
args as Its argument list and
expression  as It body. For example,

>>> (lambda a:a+1)(2)
3

And there are definitions of map,
reduce and filter  to map a
function to a list of values, to reduce
a list (using a binary function) and to
select values from a list (using a
predicate):
>>> def double(a):

return 2*a;

>>> map(double,[1,2,3,4])
2, 4, 6, 8]

CS 538 Spring 200%° 635



>>> def sum(a,b):
return a+b

>>> reduce(sum,[1,2,3,4,5])
15
>>> def even(a):

return not(a%?2)

>>> filter(even,[1,2,3,4,5])
2, 4]

CS 538 Spring 200%° 636



