
34CS 538 Spring 2002
©

Functional Languages
Lisp, Scheme and ML are functional
in nature.
Programs are expressions to be
evaluated.
Language design aims to minimize
side-effects, including assignment.
Alternative evaluation mechanisms
are possible, including

Lazy (Demand Driven)
Eager (Data Driven or Speculative)

35CS 538 Spring 2002
©

Object-Oriented Languages
C++, Java, Smalltalk, Pizza and
Python are object-oriented.
Data and functions are encapsulated
into Objects.
Objects are active, have persistent
state, and uniform interfaces
(messages or methods).
Notions of inheritance and common
interfaces are central.
All objects that provide the same
interface can be treated uniformly. In
Java you can print any object that
provides the toString method. You
can iterate through the elements of
any Java object that implements the
Enumeration interface.

36CS 538 Spring 2002
©

Subclassing allows to you extend or
redefine part of an object’s behavior
without reprogramming all of the
object’s definition. Thus in Java, you
can take a Hashtable class (which is
fairly elaborate) and create a subclass
in which an existing method (like
toString) is redefined, or new
operations are added.

37CS 538 Spring 2002
©

Logic Programming Languages
Prolog notes that most programming
languages address both the logic of a
program (what is to be done) and the
control flow of a program (how to do
what you want).
A logic programming language, like
Prolog, lets programmers focus on a
program’s logic without concern for
control issue.
These languages have no real control
structures, and little notion of “flow
of control.”
What results are programs that are
unusually succinct and focused.

38CS 538 Spring 2002
©

Example:
inOrder([]).
inOrder([_]).
inOrder([a,b|c]) :- (a<b),

 inOrder([b|c]).

This is a complete, executable
function that determines if a list is in
order. It is naturally polymorphic, and
is not cluttered with declarations,
variables or explicit loops.

39CS 538 Spring 2002
©

Review of Concepts from
Procedural Programming
Languages

Declarations/Scope/Lifetime/Binding
Static/Dynamic

• Identifiers are declared, either explicitly
or implicitly (from context of first use).

• Declarations bind type and kind
information to an identifier. Kind
specifies the grouping of an identifier
(variable, label, function, type name,
etc.)

• Each identifier has a scope (or range) in
a program—that part of the program in
which the identifier is visible (i.e., may
be used).

