1/0O In Python

The easiest way to print information
In Python Is the print statement.
You supply a list of values separated
by commas. Values are converted to
strings (using the str() function)
and printed to standard out, with a
terminating new line automatically
Included. For example,

>>> print "1+1="1+1
1+1=2

If you don’t want the automatic end
of line, add a comma to the end of
the print list:

>>> for1in range(1,11):
print |,

12345678910

CS 538 Spring 200%°

637

For those who love C’s printf |
Python provides a nice formatting
capability using a printf-like
notation. The expression

format % tuple

formats a tuple of values using a

format string. The detailed formatting

rules are those of C’s printf . Thus

>>> print "%d+%d=%d" %
(10,20,10+20)

10+20=30

CS 538 Spring 200%° 638

File-oriented 1/0O

You open a file using
open(name,mode)

which returns a “file object.”
name IS a string representing the file’s
path name; mode Is a string
representing the desired access
mode('r for read, 'w' for write,
etc.).

Thus

>>> f=open("/tmp/f1","w");

>>> f

<open file 'tmp/fl', mode 'w' at
decd8>

opens a temp file for writing.

The command
f.read(n)

reads n bytes (as a string).

CS 538 Spring 200%°

639

fread() reads the whole file into a
string. At end-of-file, f.read returns
the null string:

>>> f = open("/tmp/ttt","r")

>>> f.read(3)

'‘aaa’

>>> f.read(5)

"bbb’

>>> f.read()

'‘ccc\012ddd eee ff\012g h 1\012'

>>> f.read()

f.readline() reads a whole line of
Input, and f.readlines() reads the
whole input file into a list of strings:
>>> f = open("/tmp/ttt","r")

>>> f.readline()

‘aaa bbb ccc\012'

>>> f.readline()

CS 538 Spring 200%° 640

'ddd eee ff\012'
>>> f.readline()
g hi\012

>>> f.readline()

>>> f = open("/tmp/ttt","r")
>>> f.readlines()

['aaa bbb ccc\012', 'ddd eee
ffl012', 'g h N012']

f.write(string) writes a string
to file object f ; f.close() closes a
file object:

>>>f= open("/tmp/ttt","w")

>>> f.write("abcd")

>>> fwrite("%d %d"%(1,-1))

>>> f.close()

>>> f = open("/tmp/ttt","r")

>>> f.readlines()

['abcdl -17

CS 538 Spring 200%° 641

Classes in Python

Python contains a class creation
mechanism that’s fairly similar to
what’s found in C++ or Java.

There are significant differences
though:

. All class members are public.

. Instance fields aren’t declared. Rather,
you just create fields as needed by
assignment (often in constructors).

. There are class fields (shared by all
class instances), but there are no
class methods. That is, all methods
are instance methods.

CS 538 Spring 200%° 642

. All Iinstance methods (including
constructors) must explicitly provide
an initial parameter that represents
the object instance. This parameter is
typically called self . It’s roughly the
equivalent of this In C++ or Java.

CS 538 Spring 200%° 643

Defining Classes

You define a class by executing a class
definition of the form

class name:
statement(s)

A class definition creates a class
object from which class instances may
be created (just like in Java). The
statements within a class definition
may be data members (to be shared
among all class instances) as well as
function definitions (prefixed by a
def command). Each function must
take (at least) an initial parameter
that represents the class instance
within which the function (instance
method) will operate. For example,

CS 538 Spring 200%°

644

class Example:
cnt=1
def msg(self):

print "Bo"+"0"*Example.cnt+
"1"*self.n

>>> Example.cnt

1

>>> Example.msg

<unbound method Example.msg>

Example.msg 1S unbound because we
haven’t created any instances of the
Example class yet.

We create class instances by using the
class name as a function:

>>> e=Example()

>>> e.msg()

AttributeError: n

We get the AttributeError
message regarding n because we
haven’t defined n yet! One way to do

CS 538 Spring 200%° 645

this Is to just assign to It, using the
usual field notation:

>>> e.n=1

>>> e.msg()

Boo!

>>> e.n=2;Example.cnt=2

>>> e.msg()

Booo!!

We can also call an instance method
by making the class object an explicit
parameter:

>>> Example.msg(e)
Booo!!

It’s nice to have data members
Initialized when an object Is created.
This Is usually done with a
constructor, and Python allows this
too.

CS 538 Spring 200%° 646

A special method named __init IS
called whenever an object Is created.
This method takes self as Its first
parameter; other parameters (possibly
made optional) are allowed.

We can therefore extend our
Example class with a constructor:

class Example:
cnt=1
def _init_ (self,nval=1):
self.n=nval
def msg(self):

print "Bo"+"0"*Example.cnt+
"1"*self.n

>>> e=Example()
>>> e.n

>>> f=Example(2)
>>> f.n

CS 538 Spring 2002 647

You can also define the equivalent of
Java’s toString method by defining
a member function named

str_ (self)

For example, if we add
def str (self):

return "<%d>"%self.n
10 Example ,
then we can include Example objects
In print statements:
>>> e=Example(2)
>>> print e
<2>

CS 538 Spring 200%° 648

Inheritance

Like any language that supports
classes, Python allows inheritance
from a parent (or base) class. In fact,
Python allows multiple inheritance in
which a class inherits definitions from
more than one parent.

When defining a class you specify
parents classes as follows:

class name(parent classes):
statement(s)

The subclass has access to 1ts own
definitions as well as those available
to I1ts parents. All methods are virtual,
so the most recent definition of a
method Is always used.

CS 538 Spring 200%°

649

class C:

def Dolt(self):
self.Printlt()

def Printlt(self):
print "C rules!"

class D(C):

def Printlt(self):
print "D rules!"

def Testlt(self):
self.Dolt()

dvar = D()
dvar.Testlt()

D rules!

CS 538 Spring 200%° 650

If you specify more than one parent
for a class, lookup Is depth-first, left
to right, in the list of parents
provided. For example, given

class A(B,C): ...
we first look for a non-local

definition in B (and Iits parents), then
In C (and Its parents).

CS 538 Spring 200%° 651

Operator Overloading

You can overload definitions of all of
Python’s operators to apply to newly
defined classes. Each operator has a
corresponding method name assigned
to It. For example, + uses __add__, -
uses _sub__, etc.

CS 538 Spring 200%° 652

Given

class Triple:

def _init_ (self,A=0,B=0,C=0):
self.a=A

self.b=B

self.c=C

def str (self):

return "(%d,%d,%d)"%
(self.a,self.b,self.c)

def add__(self,other):

return Triple(self.a+other.a,
self.b+other.b,
self.c+other.c)

the following code
t1=Triple(1,2,3)
t2=Triple(4,5,6)
print t1+t2

produces

(5,7,9)

CS 538 Spring 200%° 653

Exceptions

Python provides an exception
mechanism that’s quite similar to the
one used by Java.

You “throw” an exception by using a
raise Statement:

raise exceptionValue

There are numerous predefined
exceptions, including

OverflowError (arithmetic
overflow), EOFError (when end-of-
file is hit), NameError (when an
undeclared identifier is referenced),
etc.

CS 538 Spring 200%°

654

You may define your own exceptions
as subclasses of the predefined class
Exception
class badValue(Exception):
def _init_ (self,val):
self.value=val

You catch exceptions in Python’s
version of a try statement:

try:
statement(s)
except exceptionName 4,1d 1:

statement(s)

except exceptionName ,,id
statement(s)

As was the case In Java, an exception
raised within the try body Is handled
by an except clause If the raised

exception matches the class named In

CS 538 Spring 200%° 655

the except clause. If the raised
exception Is not matched by any
except clause, the next enclosing

try 1S considered, or the exception IS

reraised at the point of call.

For example, using our badVvalue
exception class,
def sqrt(val):
if val <0.0:
raise badValue(val)
else:
return cmath.sqrt(val)

try:
print "Ans =",sqrt(-123.0)
except badValue,b:

print "Can’t take sqrt of",
b.value

When executed, we get
Ans = Can’t take sqgrt of -123.0

CS 538 Spring 200%°

656

Modules

Python contains a module feature
that allows you to access Python code
stored in files or libraries. If you have
a source file mydefs.py the
command

Import mydefs
will read in all the definitions stored

In the file. What's read in can be seen
by executing

dir(mydefs)
To access an imported definition, you

qualify 1t with the name of the
module. For example,

mydefs.fct

accesses fct which 1s defined In
module mydefs .

CS 538 Spring 2002 657

To avoid explicit qualification you can
use the command

from modulename import id 1, 1d 5,

This makes id 4, id 5, ... available
without qualification. For example,

>>> from test import sgrt
>>> sqrt(123)
(11.0905365064+0)

You can use the command

from modulename import *

to import (without qualification) all
the definitions in modulename.

CS 538 Spring 200%° 658

The Python Library

One of the great strengths of Python
IS that It contains a vast number of
modules (at least several hundred)
known collectively as the Python
Library. What makes Python really
useful is the range of prewritten
modules you can access. Included are
network access modules, multimedia
utilities, data base access, and much
more.

See
www.python.org/doc/lib

for an up-to-date listing of what'’s
available.

CS 538 Spring 200%° 659

