
637CS 538 Spring 2002
©

I/O in Python
The easiest way to print information
in Python is the print statement.
You supply a list of values separated
by commas. Values are converted to
strings (using the str() function)
and printed to standard out, with a
terminating new line automatically
included. For example,
>>> print "1+1=",1+1
1+1= 2

If you don’t want the automatic end
of line, add a comma to the end of
the print list:
>>> for i in range(1,11):

... print i,

...

1 2 3 4 5 6 7 8 9 10

638CS 538 Spring 2002
©

For those who love C’s printf ,
Python provides a nice formatting
capability using a printf-like
notation. The expression

format % tuple

formats a tuple of values using a
format string. The detailed formatting
rules are those of C’s printf . Thus
>>> print "%d+%d=%d" %
 (10,20,10+20)
10+20=30

639CS 538 Spring 2002
©

File-oriented I/O
You open a file using
open(name,mode)

which returns a “file object.”
name is a string representing the file’s
path name; mode is a string
representing the desired access
mode('r' for read, 'w' for write,
etc.).
Thus
>>> f=open("/tmp/f1","w");
>>> f
<open file '/tmp/f1', mode 'w' at
decd8>

opens a temp file for writing.
The command
 f.read(n)

reads n bytes (as a string).

640CS 538 Spring 2002
©

f.read() reads the whole file into a
string. At end-of-file, f.read returns
the null string:
>>> f = open("/tmp/ttt","r")

>>> f.read(3)
'aaa'

>>> f.read(5)
' bbb '

>>> f.read()
'ccc\012ddd eee fff\012g h i\012'

>>> f.read()
''

f.readline() reads a whole line of
input, and f.readlines() reads the
whole input file into a list of strings:
>>> f = open("/tmp/ttt","r")

>>> f.readline()
'aaa bbb ccc\012'

>>> f.readline()

641CS 538 Spring 2002
©

'ddd eee fff\012'

>>> f.readline()
'g h i\012'

>>> f.readline()
''

>>> f = open("/tmp/ttt","r")

>>> f.readlines()
['aaa bbb ccc\012', 'ddd eee
fff\012', 'g h i\012']

f.write(string) writes a string
to file object f ; f.close() closes a
file object:
>>> f = open("/tmp/ttt","w")

>>> f.write("abcd")

>>> f.write("%d %d"%(1,-1))

>>> f.close()

>>> f = open("/tmp/ttt","r")

>>> f.readlines()
['abcd1 -1']

642CS 538 Spring 2002
©

Classes in Python
Python contains a class creation
mechanism that’s fairly similar to
what’s found in C++ or Java.
There are significant differences
though:
• All class members are public.

• Instance fields aren’t declared. Rather,
you just create fields as needed by
assignment (often in constructors).

• There are class fields (shared by all
class instances), but there are no
class methods. That is, all methods
are instance methods.

643CS 538 Spring 2002
©

• All instance methods (including
constructors) must explicitly provide
an initial parameter that represents
the object instance. This parameter is
typically called self . It’s roughly the
equivalent of this in C++ or Java.

644CS 538 Spring 2002
©

Defining Classes
You define a class by executing a class
definition of the form
class name:

 statement(s)

A class definition creates a class
object from which class instances may
be created (just like in Java). The
statements within a class definition
may be data members (to be shared
among all class instances) as well as
function definitions (prefixed by a
def command). Each function must
take (at least) an initial parameter
that represents the class instance
within which the function (instance
method) will operate. For example,

645CS 538 Spring 2002
©

class Example:
 cnt=1
 def msg(self):
 print "Bo"+"o"*Example.cnt+

"!"*self.n

>>> Example.cnt
1

>>> Example.msg
<unbound method Example.msg>

Example.msg is unbound because we
haven’t created any instances of the
Example class yet.
We create class instances by using the
class name as a function:
>>> e=Example()

>>> e.msg()
AttributeError: n

We get the AttributeError
message regarding n because we
haven’t defined n yet! One way to do

646CS 538 Spring 2002
©

this is to just assign to it, using the
usual field notation:
>>> e.n=1

>>> e.msg()
Boo!

>>> e.n=2;Example.cnt=2

>>> e.msg()
Booo!!

We can also call an instance method
by making the class object an explicit
parameter:
>>> Example.msg(e)
Booo!!

It’s nice to have data members
initialized when an object is created.
This is usually done with a
constructor, and Python allows this
too.

647CS 538 Spring 2002
©

A special method named __init__ is
called whenever an object is created.
This method takes self as its first
parameter; other parameters (possibly
made optional) are allowed.
We can therefore extend our
Example class with a constructor:
class Example:
 cnt=1
 def __init__(self,nval=1):
 self.n=nval
 def msg(self):
 print "Bo"+"o"*Example.cnt+
 "!"*self.n

>>> e=Example()

>>> e.n
1

>>> f=Example(2)

>>> f.n
2

648CS 538 Spring 2002
©

You can also define the equivalent of
Java’s toString method by defining
a member function named
__str__(self) .
For example, if we add

def __str__(self):

 return "<%d>"%self.n

to Example ,
then we can include Example objects
in print statements:
>>> e=Example(2)

>>> print e
<2>

649CS 538 Spring 2002
©

Inheritance
Like any language that supports
classes, Python allows inheritance
from a parent (or base) class. In fact,
Python allows multiple inheritance in
which a class inherits definitions from
more than one parent.
When defining a class you specify
parents classes as follows:
class name(parent classes):

 statement(s)

The subclass has access to its own
definitions as well as those available
to its parents. All methods are virtual,
so the most recent definition of a
method is always used.

650CS 538 Spring 2002
©

class C:

 def DoIt(self):
 self.PrintIt()
 def PrintIt(self):
 print "C rules!"

class D(C):
 def PrintIt(self):
 print "D rules!"
 def TestIt(self):
 self.DoIt()

 dvar = D()
 dvar.TestIt()

D rules!

651CS 538 Spring 2002
©

If you specify more than one parent
for a class, lookup is depth-first, left
to right, in the list of parents
provided. For example, given
class A(B,C): ...

we first look for a non-local
definition in B (and its parents), then
in C (and its parents).

652CS 538 Spring 2002
©

Operator Overloading
You can overload definitions of all of
Python’s operators to apply to newly
defined classes. Each operator has a
corresponding method name assigned
to it. For example, + uses __add__ , -
uses __sub__ , etc.

653CS 538 Spring 2002
©

Given
class Triple:
 def __init__(self,A=0,B=0,C=0):
 self.a=A
 self.b=B
 self.c=C
 def __str__(self):
 return "(%d,%d,%d)"%
 (self.a,self.b,self.c)
 def __add__(self,other):

return Triple(self.a+other.a,
self.b+other.b,

 self.c+other.c)

the following code
t1=Triple(1,2,3)

t2=Triple(4,5,6)

print t1+t2

produces
(5,7,9)

654CS 538 Spring 2002
©

Exceptions
Python provides an exception
mechanism that’s quite similar to the
one used by Java.
You “throw” an exception by using a
raise statement:

raise exceptionValue

There are numerous predefined
exceptions, including
OverflowError (arithmetic
overflow), EOFError (when end-of-
file is hit), NameError (when an
undeclared identifier is referenced),
etc.

655CS 538 Spring 2002
©

You may define your own exceptions
as subclasses of the predefined class
Exception :
class badValue(Exception):

 def __init__(self,val):

 self.value=val

You catch exceptions in Python’s
version of a try statement:
try:

 statement(s)

except exceptionName 1, id 1:

 statement(s)

...

except exceptionName n, id n:

 statement(s)

As was the case in Java, an exception
raised within the try body is handled
by an except clause if the raised
exception matches the class named in

656CS 538 Spring 2002
©

the except clause. If the raised
exception is not matched by any
except clause, the next enclosing
try is considered, or the exception is
reraised at the point of call.
For example, using our badValue
exception class,
 def sqrt(val):
 if val < 0.0:
 raise badValue(val)
 else:
 return cmath.sqrt(val)

try:
 print "Ans =",sqrt(-123.0)
except badValue,b:
 print "Can’t take sqrt of",

b.value

When executed, we get
Ans = Can’t take sqrt of -123.0

657CS 538 Spring 2002
©

Modules
Python contains a module feature
that allows you to access Python code
stored in files or libraries. If you have
a source file mydefs.py the
command
 import mydefs

will read in all the definitions stored
in the file. What’s read in can be seen
by executing
dir(mydefs)

To access an imported definition, you
qualify it with the name of the
module. For example,
mydefs.fct

accesses fct which is defined in
module mydefs .

658CS 538 Spring 2002
©

To avoid explicit qualification you can
use the command
from modulename import id 1, id 2,
...

This makes id 1, id 2, ... available
without qualification. For example,
>>> from test import sqrt

>>> sqrt(123)
(11.0905365064+0j)

You can use the command
from modulename import *

to import (without qualification) all
the definitions in modulename.

659CS 538 Spring 2002
©

The Python Library
One of the great strengths of Python
is that it contains a vast number of
modules (at least several hundred)
known collectively as the Python
Library. What makes Python really
useful is the range of prewritten
modules you can access. Included are
network access modules, multimedia
utilities, data base access, and much
more.
See
www.python.org/doc/lib

for an up-to-date listing of what’s
available.

