
40CS 538 Spring 2002
©

• Data objects have a lifetime—the span of
time, during program execution, during
which the object exists and may be used.

• Lifetimes of data objects are often tied
to the scope of the identifier that
denotes them. The objects are created
when its identifier’s scope is entered, and
they may be deleted when the identifier’s
scope is exited. For example, memory for
local variables within a function is
usually allocated when the function is
called (activated) and released when the
call terminates.
In Java, a method may be loaded into
memory when the object it is a member
of is first accessed.

41CS 538 Spring 2002
©

Properties of an identifier (and the
object it represents) may be set at
• Compile-time

These are static properties as they do
not change during execution.
Examples include the type of a
variable, the value of a constant, the
initial value of a variable, or the body
of a function.

• Run-time
These are dynamic properties.
Examples include the value of a
variable, the lifetime of a heap object,
the value of a function’s parameter,
the number of times a while loop
iterates, etc.

42CS 538 Spring 2002
©

Example: In Fortran
• The scope of an identifier is the whole

program or subprogram.

• Each identifier may be declared only
once.

• Variable declarations may be implicit.
(Using an identifier implicitly declares it
as a variable.)

• The lifetime of data objects is the whole
program.

43CS 538 Spring 2002
©

Block Structured Languages
• Include Algol 60, Pascal, C and Java.

• Identifiers may have a non-global scope.
Declarations may be local to a class,
subprogram or block.

• Scopes may nest, with declarations
propagating to inner (contained) scopes.

• The lexically nearest declaration of an
identifier is bound to uses of that
identifier.

44CS 538 Spring 2002
©

Binding of an identifier to its
corresponding declaration is usually
static (also called lexical), though
dynamic binding is also possible.
Static binding is done prior to
execution—at compile-time.
Example (drawn from C):

int x,z;
void A() {

float x,y;
 print(x,y,z);

}
void B() {
 print (x,y,z)

}

float
float

int

int

int
undeclared

45CS 538 Spring 2002
©

Block Structure Concepts
• Nested Visibility

No access to identifiers outside their
scope.

• Nearest Declaration Applies
Static name scoping.

• Automatic Allocation and Deallocation
of Locals

Lifetime of data objects is bound to
the scope of the Identifiers that
denote them.

46CS 538 Spring 2002
©

Variations in these rules of name
scoping are possible.
For example, in Java, the lifetime of
all class objects is from the time of
their creation (via new) to the last
visible reference to them.
Thus
 ... Object O; ...
creates an object reference but does
not allocate any memory space for O.
You need
 ... Object O = new Object(); ...
to actually create memory space for
O.

47CS 538 Spring 2002
©

Dynamic Scoping
An alternative to static scoping is
dynamic scoping, which was used in
early Lisp dialects (but not in Scheme,
which is statically scoped).
Under dynamic scoping, identifiers
are bound to the dynamically closest
declaration of the identifier. Thus if
an identifier is not locally declared,
the call chain (sequence of callers) is
examined to find a matching
declaration.

48CS 538 Spring 2002
©

Example:
 int x;

 void print() {

 write(x); }

 main () {

 bool x;

 print();

 }

Under static scoping the x written in
print is the lexically closest
declaration of x , which is as an int .
Under dynamic scoping, since print
has no local declaration of x , print ’s
caller is examined. Since main calls
print , and it has a declaration of x
as a bool , that declaration is used.

49CS 538 Spring 2002
©

Dynamic scoping makes type checking
and variable access harder and more
costly than static scoping. (Why?)
However, dynamic scoping does allow
a notion of an “extended scope” in
which declarations extend to
subprograms called within that scope.
Though dynamic scoping may seen a
bit bizarre, it is closely related to
virtual functions used in C++ and
Java.

50CS 538 Spring 2002
©

Virtual Functions
A function declared within a class, C,
may be redeclared within a class
derived from C. Moreover, for
uniformity of redeclaration, it is
important that all calls, including
those in methods within C, use the
new declaration.
Example:
 class C {

 void DoIt()(PrintIt();}
 void PrintIt()
 {println(“C rules!”);}
 }
 class D extends C {
 void PrintIt()
 {println(“D rules!”);}
 void TestIt() {DoIt();}
 }
 D dvar = new D();
 dvar.TestIt();

D rules! is printed.

51CS 538 Spring 2002
©

Scope vs. Lifetime
It is usually required that the lifetime
of a run-time object at least cover
the scope of the identifier. That is,
whenever you can access an identifier,
the run-time object it denotes better
exist.
But,
it is possible to have a run-time
object’s lifetime exceed the scope of
its identifier. An example of this is
static or own variables.

52CS 538 Spring 2002
©

In C:
void p() {

 static int i = 0;

 print(i++);

 }

Each call to p prints a different value
of i (0, 1, ...) Variable i retains its
value across calls.
Some languages allow an explicit
binding of an identifier for a fixed
scope:

A declaration may appear wherever a
statement or expression is allowed.
Limited scopes enhance readability.

Let
id = val

in
 statements
end;

{
 type id = val;
 statements

}

