
53CS 538 Spring 2002
©

Structs vs. Blocks
Many programming languages,
including C, C++, Pascal and Ada,
have a notion of grouping data
together into structs or records.
For example:

struct complex { float re, im; }

There is also the notion of grouping
statements and declarations into
blocks:

{ float re, im;

 re = 0.0; im = 1.0;

 }

54CS 538 Spring 2002
©

Blocks and structs look similar, but
there are significant differences:
Structs are data,
• As originally designed, structs contain

only data (no functions or methods).

• Structs can be dynamically created, in
any number, and included in other
data structures (e.g., in an array of
structs).

• All fields in a struct are visible
outside the struct.

55CS 538 Spring 2002
©

Blocks are code,
• They can contain both code and data.

• Blocks can’t be dynamically created
during execution; they are “built
into” a program.

• Locals in a block aren’t visible outside
the block.

By adding functions and initialization
code to structs, we get classes—a nice
blend of structs and blocks.
For example:
class complex{

 float re, im;

 complex (float v1, float v2){

 re = v1; im = v2; }

 }

56CS 538 Spring 2002
©

Classes
• Classes can be created as needed, in any

number, and included in other data
structure.

• They include both data (fields) and
functions (methods).

• They include mechanisms to initialize
themselves (constructors) and to finalize
themselves (destructors).

• They allow controlled access to members
(private and public declarations).

57CS 538 Spring 2002
©

Type Equivalence in Classes
In C, C++ and Java, instances of the
same struct or class are type-
equivalent, and mutually assignable.
For example:
class MyClass { ... }
MyClass v1, v2;
v1 = v2; // Assignment is OK

We expect to be able to assign values
of the same type, including class
objects.
However, sometimes a class models a
data object whose size or shape is set
upon creation (in a constructor).
Then we may not want assignment to
be allowed.

58CS 538 Spring 2002
©

class Point {
 int dimensions;
 float coordinates[];
 Point () {
 dimensions = 2;
 coordinates = new float[2];
 }
 Point (int d) {
 dimensions = d;
 coordinates = new float[d];
 }
 }
 Point plane = new Point();
 Point solid = new Point(3);

 plane = solid; //OK in Java

This assignment is allowed, even
though the two objects represent
points in different dimensions.

59CS 538 Spring 2002
©

Subtypes
In C++ and Java we can create
subclasses—new classes derived from
an existing class.
We can use subclasses to create new
data objects that are similar (since
they are based on a common parent),
but still type-inequivalent.
Example:

class Point2 extends Point {

 Point2() {super(2); }
 }
 class Point3 extends Point {
 Point3() {super(3); }
 }
 Point2 plane = new Point2();
 Point3 solid = new Point3();

plane = solid; //Illegal in Java

60CS 538 Spring 2002
©

Parametric Polymorphism
We can create distinct subclasses
based on the values passed to
constructors. But sometimes we want
to create subclasses based on distinct
types, and types can’t be passed as
parameters. (Types are not values, but
rather a property of values.)
We see this problem in Java, which
tries to create general purpose data
structures by basing them on the
class Object . Since any object can be
assigned to Object (all classes must
be a subclass of Object), this works—
at least partially.

61CS 538 Spring 2002
©

class LinkedList {
 Object value;
 LinkedList next;
 Object head() {return value;}

LinkedList tail(){return next;}
 LinkedList(Object O) {
 value = O; next = null;}
 LinkedList(Object O,
 LinkedList L){
 value = O; next = L;}
}

Using this class, we can create a
linked list of any subtype of Object .
But,
• We can’t guarantee that linked lists

are type homogeneous (contain only a
single type).

• We must cast Object types back into
their “real” types when we extract list
values.

62CS 538 Spring 2002
©

• We must use wrapper classes like
Integer rather than int (because
primitive types like int aren’t
objects, and aren’t subclass of
Object).

For example, to use LinkedList to
build a linked list of int s we do the
following:

LinkedList l =
 new LinkedList(new Integer(123));

 int i =
 ((Integer) l.head()).intValue();

This is pretty clumsy code. We’d
prefer a mechanism that allows us to
create a “custom version” of
LinkedList , based on the type we
want the list to contain.

63CS 538 Spring 2002
©

We can’t just call something like
LinkedList(int) or
LinkedList(Integer) because

types can’t be passed as parameters.
Parametric polymorphism is the
solution. Using this mechanism, we
can use type parameters to build a
“custom version” of a class from a
general purpose class.
C++ allows this using its template
mechanism. Pizza, an extension of
Java, also allows type parameters.
In both languages, type parameters
are enclosed in “angle brackets” (e.g.,
LinkedList<T> passes T, a type, to
the LinkedList class).

64CS 538 Spring 2002
©

In Pizza we have
class LinkedList<T> {
 T value; LinkedList<T> next;
 T head() {return value;}
 LinkedList<T> tail() {
 return next;}
 LinkedList(T O) {
 value = O; next = null;}
 LinkedList(T O,LinkedList<T> L)
 {value = O; next = L;}
}

LinkedList<int> l =
 new LinkedList(123);

int i = l.head();

65CS 538 Spring 2002
©

Overloading and Ad-hoc
Polymorphism

Classes usually allow overloading of
method names, if only to support
multiple constructors.
That is, more than one method
definition with the same name is
allowed within a class, as long as the
method definitions differ in the
number and/or types of the
parameters they take.
For example,
class MyClass {

 int f(int i) { ... }

 int f(float g) { ... }

 int f(int i, int j) { ... }

}

66CS 538 Spring 2002
©

Overloading is sometimes called “ad
hoc” polymorphism, because, to the
programmer, it appears that one
method can take a variety of different
parameter types. This isn’t true
polymorphism because the methods
have different bodies; there is no
sharing of one definition among
different parameter types. There is no
guarantee that the different
definitions do the same thing, even
though they share a common name.

