
67CS 538 Spring 2002
©

Reading Assignment
• Sethi: Chapters 4-5

• Scott: Chapters 3

68CS 538 Spring 2002
©

Issues in Overloading
Though many languages allow
overloading, few allow overloaded
methods to differ only on their result
types. (Neither C++ nor Java allow
this kind of overloading, though Ada
does). For example,
class MyClass {

 int f() { ... }

 float f() { ... }

}

is illegal. This is unfortunate, since
methods with the same name and
parameters, but different result types,
could be used to automatically
convert result values to the type
demanded by the context of call.

69CS 538 Spring 2002
©

Why is this form of overloading
usually disallowed?
It’s because overload resolution
(deciding which definition to use)
becomes much harder. Consider
class MyClass {
 int f(int i, int j) { ... }
 float f(float i, float j) { ... }
 float f(int i, int j) { ... }
}

in
int a = f(f(1,2), f(3,4));

which definitions of f do we use in
each of the three calls? Getting the
correctly answer can be tricky, though
solution algorithms do exist.

70CS 538 Spring 2002
©

Operator Overloading
Some languages, like C++, allow
operators to be overloaded. You may
add new definitions to existing
operators, and use them on your own
types. For example,
 class MyClass {

 int i;

 public:

 int operator+(int j) {

 return i+j; }

 }

 MyClass c;

 int i = c+10;

 int j = c.operator+(10);

 int k = 10+c; // Illegal!

71CS 538 Spring 2002
©

The expression 10+c is illegal because
there is no definition of + for the
types int and MyClass& . We can
create one by using C++’s friend
mechanism to insert a definition into
MyClass that will have access to
MyClass ’s private data:
 class MyClass {

 int i;

 public:

 int operator+(int j) {

 return i+j; }
 friend int operator+
 (int j, MyClass& v){

 return j+v.i; }

 }

 MyClass c;

 int k = 10+c; // Now OK!

72CS 538 Spring 2002
©

C++ limits operator overloading to
existing predefined operators. A few
languages, like Algol 68 (a successor
to Algol 60, developed in 1968),
allow programmers to define brand
new operators.
In addition to defining the operator
itself, it is also necessary to specify
the operator’s precedence (which
operator is to be applied first) and its
associativity (does the operator
associate from left to right, or right
to left, or not at all). Given this extra
detail, it is possible to specify
something like

op +++ prec = 8;
 int op +++(int& i, int& j) {
 return (i++)+(j++); }

(Why is int& used as the parameter
type rather than int ?)

73CS 538 Spring 2002
©

Parameter Binding
Almost all programming languages
have some notion of binding an actual
parameter (provided at the point of
call) to a formal parameter (used in
the body of a subprogram).
There are many different, and
inequivalent, methods of parameter
binding. Exactly which is used
depends upon the programming
language in question.
Parameter Binding Modes include:
• Value: The formal parameter

represents a local variable initialized
to the value of the corresponding
actual parameter.

• Result: The formal parameter
represents a local variable. Its final

74CS 538 Spring 2002
©

value, at the point of return, is copied
into the corresponding actual
parameter.

• Value/Result: A combination of the
value and results modes. The formal
parameter is a local variable
initialized to the value of the
corresponding actual parameter. The
formal’s final value, at the point of
return, is copied into the
corresponding actual parameter.

• Reference: The formal parameter is a
pointer to the corresponding actual
parameter. All references to the
formal parameter indirectly access
the corresponding actual parameter
through the pointer.

