
75CS 538  Spring 2002
©

(sometimes called a thunk) that is
evaluated to obtain the value or
address of the corresponding actual
parameter. Each reference to the
formal parameter causes the thunk to
be reevaluated.

•  Readonly (sometimes called Const):
Only reads of the formal parameter
are allowed. Either a copy of the
actual parameter’s value, or its
address, may be used.

76CS 538  Spring 2002
©

What Parameter Modes do
Programming Languages Use?
• C and C++: Value mode except for arrays

where a pointer to the start of the array
is passed.

• Java: Scalar types (int , float , char ,
etc.) are passed by value; objects are
passed by reference.

• Fortran: Reference (even for constants!)

• Ada: Value/result, reference, and
readonly are used.

77CS 538  Spring 2002
©

Example
void p(value int a,
       reference int b,
       name int c) {
  a=1; b=2; print(c)
}
int i=3, j=3, k[10][10];
p(i,j,k[i][j]);

What element of k is printed?
•  The assignment to a does not affect

i , since a is a value parameter.

•  The assignment to b does affect j ,
since b is a reference parameter.

• c  is a name parameter, so it is
evaluated whenever it is used. In the
print statement k[i][j]  is printed.
At that point i =3 and j =2, so
k[3][2]  is printed.

78CS 538  Spring 2002
©

Why are there so Many
Different Parameter Modes?

Parameter modes reflect different
views on how parameters are to be
accessed, as well as different degrees
of efficiency in accessing and using
parameters.
•  Call by value protects the actual

parameter value. No matter what the
subprogram does, the parameter can’t
be changed.

•  Call by reference allows immediate
updates to the actual parameter.

•  Call by readonly protects the actual
parameter and emphasizes the
“constant” nature of the formal
parameter.



79CS 538  Spring 2002
©

•  Call by value/result allows actual
parameters to change, but treats a
call as a single step (assign parameter
values, execute the subprogram’s
body, update parameter values).

•  Call by name delays evaluation of an
actual parameter until it is actually
needed (which may be never).

80CS 538  Spring 2002
©

Call by Name
Call by name is a special kind of
parameter passing mode. It allows
some calls to complete that otherwise
would fail. Consider

f(i,j/0)

Normally, when j/0  is evaluated, a
divide fault would terminate
execution. If j/0  is passed by name,
the division is delayed until the
parameter is needed, which may be
never.
Call by name also allows programmers
to create some interesting solutions
to hard programming problems.
Consider the conditional expression
found in C, C++, and Java:

(cond?value1:value2)

81CS 538  Spring 2002
©

What if we want to implement this as
a function call:

condExpr(cond,value1,value2) {

   if cond
        return value1;
   else return value2;
 }

With most parameter passing modes
this implementation won’t work!
(Why?)
But if value1 and value2 are passed
by name, the implementation is
correct.

82CS 538  Spring 2002
©

Call by Name and Lazy
Evaluation

Call by name has much of the flavor
of lazy evaluation. With lazy
evaluation, you don’t compute a value
but rather a suspension—a function
that will provide a value when called.
This can be useful when we need to
control how much of a computation
is actually performed.
Consider an infinite list of integers.
Mathematically it is represented as
 1, 2, 3, ...
But how do we compute a data
structure that represents an infinite
list?



83CS 538  Spring 2002
©

The obvious computation
infList(int start) {

   return list(start,
            infList(start+1));
 }

doesn’t work. (Why?)
A less obvious implementation, using
suspensions, does work:
infList(int start) {

   return list(start,
     function() {
      return infList(start+1);
     });
}

Now, whenever we are given an
infinite list, we get two things: the
first integer in the list and a
suspension function. When called,
this function will give you the rest of
the infinite list (again, one more

84CS 538  Spring 2002
©

value and another suspension
function).
The whole list is there, but only as
much as you care to access is actually
computed.

85CS 538  Spring 2002
©

Eager Parameter Evaluation
Sometimes we want parameters
evaluated eagerly—as soon as they are
known.
Consider a sorting routine that breaks
an array in half, sorts each half, and
then merges together the two sorted
halves (this is a merge sort).
In outline form it is:
sort(inputArray) {
  ...
 merge(sort(leftHalf(inputArray),

sort(rightHalf(inputArray));
}

This definition lends itself nicely to
parallel evaluation: The two halves of
an input array can be sorted in
parallel. Each of these two halves can
again be split in two, allowing parallel
sorting of four quarter-sized arrays,

86CS 538  Spring 2002
©

then leading to 8 sorts of 1/8 sized
arrays, etc.
But,
to make this all work, the two
parameters to merge must be
evaluated eagerly, rather than in
sequence.



87CS 538  Spring 2002
©

Type Equivalence
Programming languages use types to
describe the values a data object may
hold and the operations that may be
performed.
By checking the types of values,
potential errors in expressions,
assignments and calls may be
automatically detected. For example,
type checking tells us that

123 + "123"

is illegal because addition is not
defined for an integer, string
combination.
Type checking is usually done at
compile-time; this is static typing.
Type-checking may also be done at
run-time; this is dynamic typing.

88CS 538  Spring 2002
©

A program is type-safe if it is
impossible to apply an operation to a
value of the wrong type. In a type-
safe language, plus is never told to
add an integer to a string, because its
definition does not allow that
combination of operands. In type-
safe programs an operator can still
see an illegal value (e.g., a division by
zero), but it can’t see operands of the
wrong type.
A strongly-typed programming
language forbids the execution of
type-unsafe programs.
Weakly-typed programming languages
allow the execution of potentially
type-unsafe programs.
The question reduces to whether the
programming language allows

89CS 538  Spring 2002
©

programmers to “break” the type
rules, either knowingly or
unknowingly.
Java is strongly typed; type errors
preclude execution. C and C++ are
weakly typed; you can break the rules
if you wish. For example:
 int i;  int* p;

  p = (int *) i * i;

Now p may be used as an integer
pointer though multiplication need
not produce valid integer pointers.


