
90CS 538 Spring 2002
©

Reading Assignment
• Sethi: Chapter 10

• The Scheme Language Definition
 (linked from class web page)

• Scott: Section 11.2

91CS 538 Spring 2002
©

If we are going to do type checking in
a program, we must decide whether
two types, T1 and T2 are equivalent;
that is, whether they be used
interchangeably.
There are two major approaches to
type equivalence:
Name Equivalence:
Two types are equivalent if and only
if they refer to exactly the same type
declaration.
For example,
 type PackerSalaries = int[100];

 type AssemblySizes = int[100];
 PackerSalaries salary;
 AssemblySizes size;

92CS 538 Spring 2002
©

Is
sal = size;

allowed?
Using name equivalence, no. That is,
salary /≡N size since these two
variables have different type
declarations (that happen to be
identical in structure).
Formally, we define ≡N (name type
equivalence) as:
(a) T ≡N T

(b) Given the declaration
Type T1 = T2;

 T1 ≡N T2

93CS 538 Spring 2002
©

We treat anonymous types (types not
given a name) as an abbreviation for
an implicit declaration of a new and
unique type name.
Thus
 int A[10];

is an abbreviation for
 Type T new = int[10];

 T new A;

94CS 538 Spring 2002
©

Structural Equivalence
An alternative notion of type
equivalence is structural equivalence
(denoted ≡S). Roughly, two types are
structurally equivalent if the two
types have the same definition,
independent of where the definitions
are located. That is, the two types
have the same definitional structure.

95CS 538 Spring 2002
©

Formally,
 (a) T ≡S T

 (b) Given the declaration
 Type T = Q;

 T ≡S Q

 (c) If T and Q are defined using the
same type constructor and
corresponding parameters in the two
definitions are equal or structurally
equivalent
then T ≡S Q

96CS 538 Spring 2002
©

Returning to our previous example,
 type PackerSalaries = int[100];

 type AssemblySizes = int[100];
 PackerSalaries salary;
 AssemblySizes size;

salary ≡S size since both are arrays
and 100=100 and int ≡S int .

97CS 538 Spring 2002
©

Which notion of Equivalence do
Programming Languages Use?

C and C++ use structural equivalence
except for structs and classes (where
name equivalence is used). For arrays,
size is ignored.
Java uses structural equivalence for
scalars. For arrays, it requires name
equivalence for the component type,
ignoring size. For classes it uses name
equivalence except that a subtype
may be used where a parent type is
expected. Thus given
 void subr(Object O) { ... };

the call
 subr(new Integer(100));

is OK since Integer is a subclass of
Object .

98CS 538 Spring 2002
©

Automatic Type Conversions
C, C++ and Java also allow various
kinds of automatic type conversions.
In C, C++ and Java, a float will be
automatically created from an int :
 float f = 10; // No type error

Also, an integer type (char , short ,
int , long) will be widened:
 int i = 'x';

In C and C++ (but not Java), an
integer value can also be narrowed,
possibly with the loss of significant
bits:
 char c = 1000000;

99CS 538 Spring 2002
©

Lisp & Scheme
Lisp (List Processing Language) is one
of the oldest programming languages
still in wide use.
It was developed in the late 50s and
early 60s by John McCarthy.
Its innovations include:
• Support of symbolic computations.

• A Functional Programming style
without emphasis on assignments
and side-effects.

• A naturally recursive programming
style.

• Dynamic (run-time) type checking.

• Dynamic data structures (lists, binary
trees) that grow without limit.

100CS 538 Spring 2002
©

• Automatic garbage collection to
manage memory.

• Functions are treated as “first class”
values; they may be passed as
arguments, returned as result values,
stored in data structures, and created
during execution.

• A formal semantics (written in Lisp)
defined the meaning of all valid
programs.

• It provided an Integrated
Programming Environment to create,
edit and test Lisp programs.

101CS 538 Spring 2002
©

Scheme
Scheme is a recent dialect of Lisp.
It uses lexical (static) scoping.
It supports true first-class functions.
It provides program-level access to
control flow via continuation
functions.

102CS 538 Spring 2002
©

Atomic (Primitive) Data Types
Symbols:
Essentially the same form as
identifiers. Similar to enumeration
values in C and C++.
Very flexible in structure; essentially
any sequence of printable characters
is allowed; anything that starts a
valid number (except + or -) may not
start a symbol.
Valid symbols include:
 abc hello-world + <=!

Integers:
Any sequence of digits, optionally
prefixed with a + or -. Usually
unlimited in length.

103CS 538 Spring 2002
©

Reals:
A floating point number in a decimal
format (123.456) or in exponential
format (1.23e45). A leading sign and
a signed exponent are allowed
(-12.3 , 10.0e-20).
Rationals:
Rational numbers of the form integer/
integer (e.g., 1/3 or 9/7) with an
optional leading sign (-1/2 , +7/8).
Complex:
Complex numbers of the form
num+num i or num-num i, where
num is an integer or real number.
Example include 1+3i , -1.5-2.5i ,
0+1i).

104CS 538 Spring 2002
©

String:
A sequence of characters delimited by
double quotes. Double quotes and
backslashes must be escaped using a
backslash. For example

"Hello World" "\"Wow!\""

Character:
A single character prefixed by #\ . For
example, #\a , #\0 , #\\ , #\# . Two
special characters are #\space and
#\newline .
Boolean:
True is represented as #t and false is
represented as #f .

105CS 538 Spring 2002
©

Binary Trees
Binary trees are also called
S-Expressions in Lisp and Scheme.
They are of the form
 (item . item)
where item is any atomic value or any
S-Expression. For example:

 (A . B)
 (1.2 . "xyz")
 ((A . B) . C)
 (A . (B . C))

S-Expressions are linearizations of
binary trees:

A B 1.2 "xyz"

106CS 538 Spring 2002
©

S-Expressions are built and accessed
using the predefined functions cons,
car and cdr.
cons builds a new S-Expression from
two S-Expressions that represent the
left and right children.
cons(E1,E2) = (E1 . E2)
car returns are left subtree of an
S-Expression.
car (E1 . E2) = E1
cdr returns are right subtree of an
S-Expression.
cdr (E1 . E2) = E2

C A

A B B C

107CS 538 Spring 2002
©

Lists
In Lisp and Scheme lists are a special,
widely-used form of S-Expressions.
() represents the empty or null list
(A) represents the list containing A.
By definition, (A) ≡ (A . ())

(A B) represents the list containing A
and B. By definition,
(A B) ≡ (A . (B . ()))

In general, (A B C ... Z) ≡
(A . (B . (C (Z . ()) ...)))

(A B C) ≡

A

B

C ()

