
1CS 538 Spring 2002
©

CS 538

Introduction to the Theory and
Design of Programming

Languages

Charles N. Fischer

Spring 2002

 http://www.cs.wisc.edu/~fischer/cs538.html

2CS 538 Spring 2002
©

Class Meets
Mondays, Wednesdays & Fridays,
11:00 — 11:50
2535 Engineering Hall

Instructor
Charles N. Fischer
5397 Computer Sciences
Telephone: 262-6635
E-mail: fischer@cs.wisc.edu
Office Hours:

10:30 - Noon, Tuesdays &
Thursdays, or by appointment

3CS 538 Spring 2002
©

Teaching Assistant
Nilofer (Nilu) Motiwala
3310 Computer Sciences
Telephone: 262-1721
E-mail: motiwal@cs.wisc.edu
Office Hours:
 Monday: 2:30 - 4:00pm
 Thursday: 9:00 - 10:30am

4CS 538 Spring 2002
©

Key Dates
• February 22: Homework #1 (tentative)
• March 22: Programming Assignment #1 -

 Scheme (tentative)
• April 3: Midterm Exam (tentative)
• April 15: Programming Assignment #2 -

 Standard ML (tentative)
• May 1: Programming Assignment #3 -

 Prolog (tentative)
• May 10: Programming Assignment #4 -

 Pizza and Python
• May 17: Final Exam 2:45pm-4:45pm

5CS 538 Spring 2002
©

Class Text
• Required text:

Programming Languages: Concepts &
Constructs, Second Edition,
Ravi Sethi,
Addison-Wesley, 1996.

• Suggested supplemental Class Text:
Programming Language Pragmatics,
Michael L. Scott,
Morgan Kaufmann, 1999.

• Handouts and Web-based reading will
also be used.

6CS 538 Spring 2002
©

Reading Assignment
• Sethi: Chapters 1-3 (as background)

• Scott: Chapters 1-2 (as background)

Class Notes
• The transparencies used for each lecture

will be made available prior to, and after,
that lecture on the class Web page
(under the “Lecture Nodes” link).

7CS 538 Spring 2002
©

Instructional Computers
Departmental Unix Machines (nova1-
nova60) have been assigned to CS
538. All necessary compiler,
interpreters and tools will be loaded
onto these machines.

You may also use your own PC or
workstation. It will be your
responsibility to load needed software
(instructions on where to find needed
software are included on the class
web page).

The Systems Lab teaches brief
tutorials on Unix if you are unfamiliar
with that OS.

8CS 538 Spring 2002
©

Academic Misconduct Policy

• You must do your assignments—no
copying or sharing of solutions.

• You may discuss general concepts and
Ideas.

• All cases of Misconduct must be reported
to the Dean’s office.

• Penalties may be severe.

9CS 538 Spring 2002
©

Program & Homework Late
Policy
• An assignment may be handed in one,

two, or three class periods late, but not
any later.

• One late period will be debited 10%,
two late periods will be debited 20%,
three late periods will be debited 30%.

• All students will be given 4 “free” late
periods. That is, the first 40% in late
debits will be automatically forgiven.

• Your 4 free late periods my be used at
any time, and in any combination.

10CS 538 Spring 2002
©

Approximate Grade Weights
Homework 1 10%
Program 1 - Scheme 16%
Program 2 - ML 15%
Program 3 - Prolog 13%
Program 4 - Pizza & Python 6%
Midterm Exam 20%
Final Exam (non-cumulative) 20%

11CS 538 Spring 2002
©

Programming Languages to be
Considered in Detail
1. Scheme

A modern variant of Lisp.
A Functional Language: Functions are
“first class” data values.
Dynamically Typed: A variable’s type
may change during execution; no
type declarations are needed.
All memory allocation and
deallocation is automatic.
Primary data structures, lists and
numbers, are unlimited in size and
may grow without bound.
Continuations provide a novel way to
suspend and “re-execute”
computations.

12CS 538 Spring 2002
©

2. ML (“Meta Language”)
Strong, compile-time type checking.
Types are determined by inference
rather than declaration.
Polymorphic (one function
declaration can be used with many
different types).
Pattern-directed programming (you
define patterns that are automatically
matched during a call).
Typed exceptions are provided.
Abstract data types, with
constructors, are included.

13CS 538 Spring 2002
©

3. Prolog (Programming in Logic)
Programs are Facts and Rules.
Programmers are concerned with
definition, not execution.
Execution order is automatically
determined.

4. Pizza
Extends a popular Object-oriented
language, Java, to include
• Parametric polymorphism (similar to

C++’s templates)

• First-class functional objects

• Algebraic data types, including
patterns.

14CS 538 Spring 2002
©

5. Python
A simple, efficient scripting language
that quickly builds new programs out
of existing applications and libraries.
Cleanly includes objects.
Scales nicely into larger applications.

15CS 538 Spring 2002
©

Evolution of Programming
Languages

In the beginning, ...
programs were written in absolute
machine code—a sequence of bits
that encode machine instructions.
Example:

34020005
0000000c
3c011001
ac220000

This form of programming is
• Very detailed

• Very tedious

• Very error-prone

• Very machine specific

16CS 538 Spring 2002
©

Symbolic Assemblers
Allow use of symbols for operation
codes and labels.
Example:

li $v0,5
syscall
sw $v0,a

Far more readable, but still very
detailed, tedious and machine-
specific.
Types are machine types.
Control structures are conditional
branches.
Subprograms are blocks of code called
via a “subroutine branch” instruction.
All labels are global.

17CS 538 Spring 2002
©

Fortran (Formula Translator)
Example:

 do 10 i=1,100

10 a(i)=0

Developed in the mid-50s.
A major step forward:
• Programming became more “problem

oriented” and less “machine oriented.”
• Notions of control structures (ifs and

do loops) were introduced.
• Subprograms, calls, and parameters

were made available.
• Notions of machine independence were

introduced.
• Has evolved into more modern variants,

including Fortran 77, Fortran 90 and
HPF (High Performance Fortran).

18CS 538 Spring 2002
©

Cobol (Common Business
Oriented Language)

Example:
multiply i by 3 giving j.
move j to k.
write line1 after advancing
1 lines.

Developed in the early 60s.
The first widely-standardized
programming language,
Once very widely used in the
commercial world; still important.
Wordy in structure; designed for non-
scientific users.
Raised the issue of who should
program and how important
readability and maintainability are.

19CS 538 Spring 2002
©

Algol 60 (Algorithmic Language)
Example:

real procedure cheb(x,n);
value x,n;
real x; integer n;
cheb := if n = 0 then 1
 else if n = 1 then x
 else 2 × x ×
 cheb(x,n-1)-cheb(x,n-2);

Developed about 1960.
Direct precursor of Pascal, C, C++ and
Java.
Introduced many ideas now in wide
use:
• Blocks with local declarations and

scopes.

• Nested declarations and control
structures.

20CS 538 Spring 2002
©

• Parameter passing

• Automatic recursion.
But,
• I/O wasn’t standardized.

• IBM promoted Fortran and PL/I.

21CS 538 Spring 2002
©

Lisp (List Processing Language)
Example:

((lambda (x) (* x x)) 10)

Developed in the early 60s.
A radical departure from earlier
programming languages.
Programs and data are represented in
a uniform list format.
Types are a property of data values,
not variables or parameters.
A program can build and run new
functions as it executes.
Data values were not fixed in size.
Memory management was automatic.
A formal semantics was developed to
define precisely what a program
means.

22CS 538 Spring 2002
©

Simula 67 (Simulation Algol)
Example:

Class Rectangle (Width, Height);
Real Width, Height;
Boolean Procedure IsSquare;
 IsSquare := Width=Height;
End of Rectangle;

Developed about 1967.
Introduced the notion of a class (for
simulation purposes).
Included objects, a garbage collector,
and notions of extending a class.
C++ was originally C with classes (as
Simula was Algol with classes).

23CS 538 Spring 2002
©

C and C++
C was developed in the early 70’s;
C++ in the mid-80s.
These languages have a concise,
expressive syntax; they generate high
quality code sufficient for
performance-critical applications.
C, along with Unix, provided the
viability of platform-independent
languages and applications.
C and C++ allow programmers a great
deal of freedom in bending and
breaking rules.
Raise the issue of whether one
language can span both novice and
expert programmers.

24CS 538 Spring 2002
©

Interesting issue—if most statements
and expressions are meaningful, can
errors be readily detected?

if (a=b)

 a=0;

else a = 1;

25CS 538 Spring 2002
©

Java
Developed in the late 90s.
Cleaner object-oriented language
than C++.
Introduced notions of dynamic
loading of class definitions across the
Web.
Much stronger emphasis on secure
execution and detection of run-time
errors.
Extended notions of platform
independence to system
independence.

26CS 538 Spring 2002
©

What Drives Research into
New Programming Languages?
Why isn’t C or C++ or C+++ enough?
1. Curiosity

What other forms can a programming
language take?
What other notions of programming
are possible?

2. Productivity
Procedural languages, including C,
C++ and Java, are very detailed.
Many source lines imply significant
development and maintenance
expenses.

27CS 538 Spring 2002
©

3. Reliability
Too much low-level detail in
programs greatly enhances the
chance of minor errors. Even minor
errors can raise significant problems
in applications.

4. Security
Computers are entrusted with ever-
increasing responsibilities. How can
we know that a program is safe and
reliable enough to trust?

5. Execution speed
Procedural languages are closely tied
to the standard sequential model of
instruction execution. We may need
radically different programming
models to fully exploit parallel and
distributed computers.

28CS 538 Spring 2002
©

Desirable Qualities in a
Programming Language

Theoretically, all programming
languages are equivalent (Why?)
If that is so, what properties are
desirable in a programming language?

29CS 538 Spring 2002
©

• It should be easy to use.
Programs should be easy to read and
understand.
Programs should be simple to write,
without unexpected pitfalls.
It should be orthogonal, providing
only one way to do each step or
computation.
Its notation should be natural for the
application being programed.

• The language should support
abstraction.

You can’t anticipate all needed data
structures and operations, so adding
new definitions easily and efficiently
should be allowed.

30CS 538 Spring 2002
©

• The language should support testing,
debugging and verification.

• The language should have a good
development environment.

Integrated editors, compilers,
debuggers, and version control are a
big plus.

• The language should be portable,
spanning many platforms and operating
systems.

31CS 538 Spring 2002
©

• The language should be inexpensive to
use:

Execution should be fast.
Memory needs should be modest.
Translation should be fast and
modular.
Program creation and testing should
be easy and cheap.
Maintenance should not be unduly
cumbersome.
Components should be reusable.

32CS 538 Spring 2002
©

Programming Paradigms
Programming languages naturally fall
into a number of fundamental styles
or paradigms.

Procedural Languages
Most of the widely-known and
widely-used programming languages
(C, Fortran, Pascal, Ada, etc.) are
procedural in nature.
Programs execute statement by
statement, reading and modifying a
shared memory.
This programming style closely
models conventional sequential
processors linked to a random access
memory (RAM).

33CS 538 Spring 2002
©

Question:
Given

a = a + 1;

 if (a > 10)
 b = 10;
 else b = 15;
 a = a * b;

Why can’t 5 processors each execute
one line to make the program run 5
times faster?

34CS 538 Spring 2002
©

Functional Languages
Lisp, Scheme and ML are functional
in nature.
Programs are expressions to be
evaluated.
Language design aims to minimize
side-effects, including assignment.
Alternative evaluation mechanisms
are possible, including

Lazy (Demand Driven)
Eager (Data Driven or Speculative)

35CS 538 Spring 2002
©

Object-Oriented Languages
C++, Java, Smalltalk, Pizza and
Python are object-oriented.
Data and functions are encapsulated
into Objects.
Objects are active, have persistent
state, and uniform interfaces
(messages or methods).
Notions of inheritance and common
interfaces are central.
All objects that provide the same
interface can be treated uniformly. In
Java you can print any object that
provides the toString method. You
can iterate through the elements of
any Java object that implements the
Enumeration interface.

36CS 538 Spring 2002
©

Subclassing allows to you extend or
redefine part of an object’s behavior
without reprogramming all of the
object’s definition. Thus in Java, you
can take a Hashtable class (which is
fairly elaborate) and create a subclass
in which an existing method (like
toString) is redefined, or new
operations are added.

37CS 538 Spring 2002
©

Logic Programming Languages
Prolog notes that most programming
languages address both the logic of a
program (what is to be done) and the
control flow of a program (how to do
what you want).
A logic programming language, like
Prolog, lets programmers focus on a
program’s logic without concern for
control issue.
These languages have no real control
structures, and little notion of “flow
of control.”
What results are programs that are
unusually succinct and focused.

38CS 538 Spring 2002
©

Example:
inOrder([]).
inOrder([_]).
inOrder([a,b|c]) :- (a<b),

 inOrder([b|c]).

This is a complete, executable
function that determines if a list is in
order. It is naturally polymorphic, and
is not cluttered with declarations,
variables or explicit loops.

39CS 538 Spring 2002
©

Review of Concepts from
Procedural Programming
Languages

Declarations/Scope/Lifetime/Binding
Static/Dynamic

• Identifiers are declared, either explicitly
or implicitly (from context of first use).

• Declarations bind type and kind
information to an identifier. Kind
specifies the grouping of an identifier
(variable, label, function, type name,
etc.)

• Each identifier has a scope (or range) in
a program—that part of the program in
which the identifier is visible (i.e., may
be used).

40CS 538 Spring 2002
©

• Data objects have a lifetime—the span of
time, during program execution, during
which the object exists and may be used.

• Lifetimes of data objects are often tied
to the scope of the identifier that
denotes them. The objects are created
when its identifier’s scope is entered, and
they may be deleted when the identifier’s
scope is exited. For example, memory for
local variables within a function is
usually allocated when the function is
called (activated) and released when the
call terminates.
In Java, a method may be loaded into
memory when the object it is a member
of is first accessed.

41CS 538 Spring 2002
©

Properties of an identifier (and the
object it represents) may be set at
• Compile-time

These are static properties as they do
not change during execution.
Examples include the type of a
variable, the value of a constant, the
initial value of a variable, or the body
of a function.

• Run-time
These are dynamic properties.
Examples include the value of a
variable, the lifetime of a heap object,
the value of a function’s parameter,
the number of times a while loop
iterates, etc.

42CS 538 Spring 2002
©

Example: In Fortran
• The scope of an identifier is the whole

program or subprogram.

• Each identifier may be declared only
once.

• Variable declarations may be implicit.
(Using an identifier implicitly declares it
as a variable.)

• The lifetime of data objects is the whole
program.

43CS 538 Spring 2002
©

Block Structured Languages
• Include Algol 60, Pascal, C and Java.

• Identifiers may have a non-global scope.
Declarations may be local to a class,
subprogram or block.

• Scopes may nest, with declarations
propagating to inner (contained) scopes.

• The lexically nearest declaration of an
identifier is bound to uses of that
identifier.

44CS 538 Spring 2002
©

Binding of an identifier to its
corresponding declaration is usually
static (also called lexical), though
dynamic binding is also possible.
Static binding is done prior to
execution—at compile-time.
Example (drawn from C):

int x,z;
void A() {

float x,y;
 print(x,y,z);

}
void B() {
 print (x,y,z)

}

float
float

int

int

int
undeclared

45CS 538 Spring 2002
©

Block Structure Concepts
• Nested Visibility

No access to identifiers outside their
scope.

• Nearest Declaration Applies
Static name scoping.

• Automatic Allocation and Deallocation
of Locals

Lifetime of data objects is bound to
the scope of the Identifiers that
denote them.

46CS 538 Spring 2002
©

Variations in these rules of name
scoping are possible.
For example, in Java, the lifetime of
all class objects is from the time of
their creation (via new) to the last
visible reference to them.
Thus
 ... Object O; ...
creates an object reference but does
not allocate any memory space for O.
You need
 ... Object O = new Object(); ...
to actually create memory space for
O.

47CS 538 Spring 2002
©

Dynamic Scoping
An alternative to static scoping is
dynamic scoping, which was used in
early Lisp dialects (but not in Scheme,
which is statically scoped).
Under dynamic scoping, identifiers
are bound to the dynamically closest
declaration of the identifier. Thus if
an identifier is not locally declared,
the call chain (sequence of callers) is
examined to find a matching
declaration.

48CS 538 Spring 2002
©

Example:
 int x;

 void print() {

 write(x); }

 main () {

 bool x;

 print();

 }

Under static scoping the x written in
print is the lexically closest
declaration of x , which is as an int .
Under dynamic scoping, since print
has no local declaration of x , print ’s
caller is examined. Since main calls
print , and it has a declaration of x
as a bool , that declaration is used.

49CS 538 Spring 2002
©

Dynamic scoping makes type checking
and variable access harder and more
costly than static scoping. (Why?)
However, dynamic scoping does allow
a notion of an “extended scope” in
which declarations extend to
subprograms called within that scope.
Though dynamic scoping may seen a
bit bizarre, it is closely related to
virtual functions used in C++ and
Java.

50CS 538 Spring 2002
©

Virtual Functions
A function declared within a class, C,
may be redeclared within a class
derived from C. Moreover, for
uniformity of redeclaration, it is
important that all calls, including
those in methods within C, use the
new declaration.
Example:
 class C {

 void DoIt()(PrintIt();}
 void PrintIt()
 {println(“C rules!”);}
 }
 class D extends C {
 void PrintIt()
 {println(“D rules!”);}
 void TestIt() {DoIt();}
 }
 D dvar = new D();
 dvar.TestIt();

D rules! is printed.

51CS 538 Spring 2002
©

Scope vs. Lifetime
It is usually required that the lifetime
of a run-time object at least cover
the scope of the identifier. That is,
whenever you can access an identifier,
the run-time object it denotes better
exist.
But,
it is possible to have a run-time
object’s lifetime exceed the scope of
its identifier. An example of this is
static or own variables.

52CS 538 Spring 2002
©

In C:
void p() {

 static int i = 0;

 print(i++);

 }

Each call to p prints a different value
of i (0, 1, ...) Variable i retains its
value across calls.
Some languages allow an explicit
binding of an identifier for a fixed
scope:

A declaration may appear wherever a
statement or expression is allowed.
Limited scopes enhance readability.

Let
id = val

in
 statements
end;

{
 type id = val;
 statements

}

53CS 538 Spring 2002
©

Structs vs. Blocks
Many programming languages,
including C, C++, Pascal and Ada,
have a notion of grouping data
together into structs or records.
For example:

struct complex { float re, im; }

There is also the notion of grouping
statements and declarations into
blocks:

{ float re, im;

 re = 0.0; im = 1.0;

 }

54CS 538 Spring 2002
©

Blocks and structs look similar, but
there are significant differences:
Structs are data,
• As originally designed, structs contain

only data (no functions or methods).

• Structs can be dynamically created, in
any number, and included in other
data structures (e.g., in an array of
structs).

• All fields in a struct are visible
outside the struct.

55CS 538 Spring 2002
©

Blocks are code,
• They can contain both code and data.

• Blocks can’t be dynamically created
during execution; they are “built
into” a program.

• Locals in a block aren’t visible outside
the block.

By adding functions and initialization
code to structs, we get classes—a nice
blend of structs and blocks.
For example:
class complex{

 float re, im;

 complex (float v1, float v2){

 re = v1; im = v2; }

 }

56CS 538 Spring 2002
©

Classes
• Classes can be created as needed, in any

number, and included in other data
structure.

• They include both data (fields) and
functions (methods).

• They include mechanisms to initialize
themselves (constructors) and to finalize
themselves (destructors).

• They allow controlled access to members
(private and public declarations).

57CS 538 Spring 2002
©

Type Equivalence in Classes
In C, C++ and Java, instances of the
same struct or class are type-
equivalent, and mutually assignable.
For example:
class MyClass { ... }
MyClass v1, v2;
v1 = v2; // Assignment is OK

We expect to be able to assign values
of the same type, including class
objects.
However, sometimes a class models a
data object whose size or shape is set
upon creation (in a constructor).
Then we may not want assignment to
be allowed.

58CS 538 Spring 2002
©

class Point {
 int dimensions;
 float coordinates[];
 Point () {
 dimensions = 2;
 coordinates = new float[2];
 }
 Point (int d) {
 dimensions = d;
 coordinates = new float[d];
 }
 }
 Point plane = new Point();
 Point solid = new Point(3);

 plane = solid; //OK in Java

This assignment is allowed, even
though the two objects represent
points in different dimensions.

59CS 538 Spring 2002
©

Subtypes
In C++ and Java we can create
subclasses—new classes derived from
an existing class.
We can use subclasses to create new
data objects that are similar (since
they are based on a common parent),
but still type-inequivalent.
Example:

class Point2 extends Point {

 Point2() {super(2); }
 }
 class Point3 extends Point {
 Point3() {super(3); }
 }
 Point2 plane = new Point2();
 Point3 solid = new Point3();

plane = solid; //Illegal in Java

60CS 538 Spring 2002
©

Parametric Polymorphism
We can create distinct subclasses
based on the values passed to
constructors. But sometimes we want
to create subclasses based on distinct
types, and types can’t be passed as
parameters. (Types are not values, but
rather a property of values.)
We see this problem in Java, which
tries to create general purpose data
structures by basing them on the
class Object . Since any object can be
assigned to Object (all classes must
be a subclass of Object), this works—
at least partially.

61CS 538 Spring 2002
©

class LinkedList {
 Object value;
 LinkedList next;
 Object head() {return value;}

LinkedList tail(){return next;}
 LinkedList(Object O) {
 value = O; next = null;}
 LinkedList(Object O,
 LinkedList L){
 value = O; next = L;}
}

Using this class, we can create a
linked list of any subtype of Object .
But,
• We can’t guarantee that linked lists

are type homogeneous (contain only a
single type).

• We must cast Object types back into
their “real” types when we extract list
values.

62CS 538 Spring 2002
©

• We must use wrapper classes like
Integer rather than int (because
primitive types like int aren’t
objects, and aren’t subclass of
Object).

For example, to use LinkedList to
build a linked list of int s we do the
following:

LinkedList l =
 new LinkedList(new Integer(123));

 int i =
 ((Integer) l.head()).intValue();

This is pretty clumsy code. We’d
prefer a mechanism that allows us to
create a “custom version” of
LinkedList , based on the type we
want the list to contain.

63CS 538 Spring 2002
©

We can’t just call something like
LinkedList(int) or
LinkedList(Integer) because

types can’t be passed as parameters.
Parametric polymorphism is the
solution. Using this mechanism, we
can use type parameters to build a
“custom version” of a class from a
general purpose class.
C++ allows this using its template
mechanism. Pizza, an extension of
Java, also allows type parameters.
In both languages, type parameters
are enclosed in “angle brackets” (e.g.,
LinkedList<T> passes T, a type, to
the LinkedList class).

64CS 538 Spring 2002
©

In Pizza we have
class LinkedList<T> {
 T value; LinkedList<T> next;
 T head() {return value;}
 LinkedList<T> tail() {
 return next;}
 LinkedList(T O) {
 value = O; next = null;}
 LinkedList(T O,LinkedList<T> L)
 {value = O; next = L;}
}

LinkedList<int> l =
 new LinkedList(123);

int i = l.head();

65CS 538 Spring 2002
©

Overloading and Ad-hoc
Polymorphism

Classes usually allow overloading of
method names, if only to support
multiple constructors.
That is, more than one method
definition with the same name is
allowed within a class, as long as the
method definitions differ in the
number and/or types of the
parameters they take.
For example,
class MyClass {

 int f(int i) { ... }

 int f(float g) { ... }

 int f(int i, int j) { ... }

}

66CS 538 Spring 2002
©

Overloading is sometimes called “ad
hoc” polymorphism, because, to the
programmer, it appears that one
method can take a variety of different
parameter types. This isn’t true
polymorphism because the methods
have different bodies; there is no
sharing of one definition among
different parameter types. There is no
guarantee that the different
definitions do the same thing, even
though they share a common name.

67CS 538 Spring 2002
©

Issues in Overloading
Though many languages allow
overloading, few allow overloaded
methods to differ only on their result
types. (Neither C++ nor Java allow
this kind of overloading, though Ada
does). For example,
class MyClass {

 int f() { ... }

 float f() { ... }

}

is illegal. This is unfortunate, since
methods with the same name and
parameters, but different result types,
could be used to automatically
convert result values to the type
demanded by the context of call.

68CS 538 Spring 2002
©

Why is this form of overloading
usually disallowed?
It’s because overload resolution
(deciding which definition to use)
becomes much harder. Consider
class MyClass {
 int f(int i, int j) { ... }
 float f(float i, float j) { ... }
 float f(int i, int j) { ... }
}

in
int a = f(f(1,2), f(3,4));

which definitions of f do we use in
each of the three calls? Getting the
correctly answer can be tricky, though
solution algorithms do exist.

69CS 538 Spring 2002
©

Reading Assignment
• Sethi: Chapters 4-5

• Scott: Chapters 3

70CS 538 Spring 2002
©

Operator Overloading
Some languages, like C++, allow
operators to be overloaded. You may
add new definitions to existing
operators, and use them on your own
types. For example,
 class MyClass {

 int i;

 public:

 int operator+(int j) {

 return i+j; }

 }

 MyClass c;

 int i = c+10;

 int j = c.operator+(10);

 int k = 10+c; // Illegal!

71CS 538 Spring 2002
©

The expression 10+c is illegal because
there is no definition of + for the
types int and MyClass& . We can
create one by using C++’s friend
mechanism to insert a definition into
MyClass that will have access to
MyClass ’s private data:
 class MyClass {

 int i;

 public:

 int operator+(int j) {

 return i+j; }
 friend int operator+
 (int j, MyClass& v){

 return j+v.i; }

 }

 MyClass c;

 int k = 10+c; // Now OK!

72CS 538 Spring 2002
©

C++ limits operator overloading to
existing predefined operators. A few
languages, like Algol 68 (a successor
to Algol 60, developed in 1968),
allow programmers to define brand
new operators.
In addition to defining the operator
itself, it is also necessary to specify
the operator’s precedence (which
operator is to be applied first) and its
associativity (does the operator
associate from left to right, or right
to left, or not at all). Given this extra
detail, it is possible to specify
something like

op +++ prec = 8;
 int op +++(int& i, int& j) {
 return (i++)+(j++); }

(Why is int& used as the parameter
type rather than int ?)

73CS 538 Spring 2002
©

Parameter Binding
Almost all programming languages
have some notion of binding an actual
parameter (provided at the point of
call) to a formal parameter (used in
the body of a subprogram).
There are many different, and
inequivalent, methods of parameter
binding. Exactly which is used
depends upon the programming
language in question.
Parameter Binding Modes include:
• Value: The formal parameter

represents a local variable initialized
to the value of the corresponding
actual parameter.

• Result: The formal parameter
represents a local variable. Its final

74CS 538 Spring 2002
©

value, at the point of return, is copied
into the corresponding actual
parameter.

• Value/Result: A combination of the
value and results modes. The formal
parameter is a local variable
initialized to the value of the
corresponding actual parameter. The
formal’s final value, at the point of
return, is copied into the
corresponding actual parameter.

• Reference: The formal parameter is a
pointer to the corresponding actual
parameter. All references to the
formal parameter indirectly access
the corresponding actual parameter
through the pointer.

• Name: The formal parameter
represents a block of code

75CS 538 Spring 2002
©

(sometimes called a thunk) that is
evaluated to obtain the value or
address of the corresponding actual
parameter. Each reference to the
formal parameter causes the thunk to
be reevaluated.

• Readonly (sometimes called Const):
Only reads of the formal parameter
are allowed. Either a copy of the
actual parameter’s value, or its
address, may be used.

76CS 538 Spring 2002
©

What Parameter Modes do
Programming Languages Use?
• C and C++: Value mode except for arrays

where a pointer to the start of the array
is passed.

• Java: Scalar types (int , float , char ,
etc.) are passed by value; objects are
passed by reference.

• Fortran: Reference (even for constants!)

• Ada: Value/result, reference, and
readonly are used.

77CS 538 Spring 2002
©

Example
void p(value int a,
 reference int b,
 name int c) {
 a=1; b=2; print(c)
}
int i=3, j=3, k[10][10];
p(i,j,k[i][j]);

What element of k is printed?
• The assignment to a does not affect

i , since a is a value parameter.

• The assignment to b does affect j ,
since b is a reference parameter.

• c is a name parameter, so it is
evaluated whenever it is used. In the
print statement k[i][j] is printed.
At that point i =3 and j =2, so
k[3][2] is printed.

78CS 538 Spring 2002
©

Why are there so Many
Different Parameter Modes?

Parameter modes reflect different
views on how parameters are to be
accessed, as well as different degrees
of efficiency in accessing and using
parameters.
• Call by value protects the actual

parameter value. No matter what the
subprogram does, the parameter can’t
be changed.

• Call by reference allows immediate
updates to the actual parameter.

• Call by readonly protects the actual
parameter and emphasizes the
“constant” nature of the formal
parameter.

79CS 538 Spring 2002
©

• Call by value/result allows actual
parameters to change, but treats a
call as a single step (assign parameter
values, execute the subprogram’s
body, update parameter values).

• Call by name delays evaluation of an
actual parameter until it is actually
needed (which may be never).

80CS 538 Spring 2002
©

Call by Name
Call by name is a special kind of
parameter passing mode. It allows
some calls to complete that otherwise
would fail. Consider

f(i,j/0)

Normally, when j/0 is evaluated, a
divide fault would terminate
execution. If j/0 is passed by name,
the division is delayed until the
parameter is needed, which may be
never.
Call by name also allows programmers
to create some interesting solutions
to hard programming problems.
Consider the conditional expression
found in C, C++, and Java:

(cond?value1:value2)

81CS 538 Spring 2002
©

What if we want to implement this as
a function call:

condExpr(cond,value1,value2) {

 if cond
 return value1;
 else return value2;
 }

With most parameter passing modes
this implementation won’t work!
(Why?)
But if value1 and value2 are passed
by name, the implementation is
correct.

82CS 538 Spring 2002
©

Call by Name and Lazy
Evaluation

Call by name has much of the flavor
of lazy evaluation. With lazy
evaluation, you don’t compute a value
but rather a suspension—a function
that will provide a value when called.
This can be useful when we need to
control how much of a computation
is actually performed.
Consider an infinite list of integers.
Mathematically it is represented as
 1, 2, 3, ...
But how do we compute a data
structure that represents an infinite
list?

83CS 538 Spring 2002
©

The obvious computation
infList(int start) {

 return list(start,
 infList(start+1));
 }

doesn’t work. (Why?)
A less obvious implementation, using
suspensions, does work:
infList(int start) {

 return list(start,
 function() {
 return infList(start+1);
 });
}

Now, whenever we are given an
infinite list, we get two things: the
first integer in the list and a
suspension function. When called,
this function will give you the rest of
the infinite list (again, one more

84CS 538 Spring 2002
©

value and another suspension
function).
The whole list is there, but only as
much as you care to access is actually
computed.

85CS 538 Spring 2002
©

Eager Parameter Evaluation
Sometimes we want parameters
evaluated eagerly—as soon as they are
known.
Consider a sorting routine that breaks
an array in half, sorts each half, and
then merges together the two sorted
halves (this is a merge sort).
In outline form it is:
sort(inputArray) {
 ...
 merge(sort(leftHalf(inputArray),

sort(rightHalf(inputArray));
}

This definition lends itself nicely to
parallel evaluation: The two halves of
an input array can be sorted in
parallel. Each of these two halves can
again be split in two, allowing parallel
sorting of four quarter-sized arrays,

86CS 538 Spring 2002
©

then leading to 8 sorts of 1/8 sized
arrays, etc.
But,
to make this all work, the two
parameters to merge must be
evaluated eagerly, rather than in
sequence.

87CS 538 Spring 2002
©

Type Equivalence
Programming languages use types to
describe the values a data object may
hold and the operations that may be
performed.
By checking the types of values,
potential errors in expressions,
assignments and calls may be
automatically detected. For example,
type checking tells us that

123 + "123"

is illegal because addition is not
defined for an integer, string
combination.
Type checking is usually done at
compile-time; this is static typing.
Type-checking may also be done at
run-time; this is dynamic typing.

88CS 538 Spring 2002
©

A program is type-safe if it is
impossible to apply an operation to a
value of the wrong type. In a type-
safe language, plus is never told to
add an integer to a string, because its
definition does not allow that
combination of operands. In type-
safe programs an operator can still
see an illegal value (e.g., a division by
zero), but it can’t see operands of the
wrong type.
A strongly-typed programming
language forbids the execution of
type-unsafe programs.
Weakly-typed programming languages
allow the execution of potentially
type-unsafe programs.
The question reduces to whether the
programming language allows

89CS 538 Spring 2002
©

programmers to “break” the type
rules, either knowingly or
unknowingly.
Java is strongly typed; type errors
preclude execution. C and C++ are
weakly typed; you can break the rules
if you wish. For example:
 int i; int* p;

 p = (int *) i * i;

Now p may be used as an integer
pointer though multiplication need
not produce valid integer pointers.

90CS 538 Spring 2002
©

Reading Assignment
• Sethi: Chapter 10

• The Scheme Language Definition
 (linked from class web page)

• Scott: Section 11.2

91CS 538 Spring 2002
©

If we are going to do type checking in
a program, we must decide whether
two types, T1 and T2 are equivalent;
that is, whether they be used
interchangeably.
There are two major approaches to
type equivalence:
Name Equivalence:
Two types are equivalent if and only
if they refer to exactly the same type
declaration.
For example,
 type PackerSalaries = int[100];

 type AssemblySizes = int[100];
 PackerSalaries salary;
 AssemblySizes size;

92CS 538 Spring 2002
©

Is
sal = size;

allowed?
Using name equivalence, no. That is,
salary /≡N size since these two
variables have different type
declarations (that happen to be
identical in structure).
Formally, we define ≡N (name type
equivalence) as:
(a) T ≡N T

(b) Given the declaration
Type T1 = T2;

 T1 ≡N T2

93CS 538 Spring 2002
©

We treat anonymous types (types not
given a name) as an abbreviation for
an implicit declaration of a new and
unique type name.
Thus
 int A[10];

is an abbreviation for
 Type T new = int[10];

 T new A;

94CS 538 Spring 2002
©

Structural Equivalence
An alternative notion of type
equivalence is structural equivalence
(denoted ≡S). Roughly, two types are
structurally equivalent if the two
types have the same definition,
independent of where the definitions
are located. That is, the two types
have the same definitional structure.

95CS 538 Spring 2002
©

Formally,
 (a) T ≡S T

 (b) Given the declaration
 Type T = Q;

 T ≡S Q

 (c) If T and Q are defined using the
same type constructor and
corresponding parameters in the two
definitions are equal or structurally
equivalent
then T ≡S Q

96CS 538 Spring 2002
©

Returning to our previous example,
 type PackerSalaries = int[100];

 type AssemblySizes = int[100];
 PackerSalaries salary;
 AssemblySizes size;

salary ≡S size since both are arrays
and 100=100 and int ≡S int .

97CS 538 Spring 2002
©

Which notion of Equivalence do
Programming Languages Use?

C and C++ use structural equivalence
except for structs and classes (where
name equivalence is used). For arrays,
size is ignored.
Java uses structural equivalence for
scalars. For arrays, it requires name
equivalence for the component type,
ignoring size. For classes it uses name
equivalence except that a subtype
may be used where a parent type is
expected. Thus given
 void subr(Object O) { ... };

the call
 subr(new Integer(100));

is OK since Integer is a subclass of
Object .

98CS 538 Spring 2002
©

Automatic Type Conversions
C, C++ and Java also allow various
kinds of automatic type conversions.
In C, C++ and Java, a float will be
automatically created from an int :
 float f = 10; // No type error

Also, an integer type (char , short ,
int , long) will be widened:
 int i = 'x';

In C and C++ (but not Java), an
integer value can also be narrowed,
possibly with the loss of significant
bits:
 char c = 1000000;

99CS 538 Spring 2002
©

Lisp & Scheme
Lisp (List Processing Language) is one
of the oldest programming languages
still in wide use.
It was developed in the late 50s and
early 60s by John McCarthy.
Its innovations include:
• Support of symbolic computations.

• A Functional Programming style
without emphasis on assignments
and side-effects.

• A naturally recursive programming
style.

• Dynamic (run-time) type checking.

• Dynamic data structures (lists, binary
trees) that grow without limit.

100CS 538 Spring 2002
©

• Automatic garbage collection to
manage memory.

• Functions are treated as “first class”
values; they may be passed as
arguments, returned as result values,
stored in data structures, and created
during execution.

• A formal semantics (written in Lisp)
defined the meaning of all valid
programs.

• It provided an Integrated
Programming Environment to create,
edit and test Lisp programs.

101CS 538 Spring 2002
©

Scheme
Scheme is a recent dialect of Lisp.
It uses lexical (static) scoping.
It supports true first-class functions.
It provides program-level access to
control flow via continuation
functions.

102CS 538 Spring 2002
©

Atomic (Primitive) Data Types
Symbols:
Essentially the same form as
identifiers. Similar to enumeration
values in C and C++.
Very flexible in structure; essentially
any sequence of printable characters
is allowed; anything that starts a
valid number (except + or -) may not
start a symbol.
Valid symbols include:
 abc hello-world + <=!

Integers:
Any sequence of digits, optionally
prefixed with a + or -. Usually
unlimited in length.

103CS 538 Spring 2002
©

Reals:
A floating point number in a decimal
format (123.456) or in exponential
format (1.23e45). A leading sign and
a signed exponent are allowed
(-12.3 , 10.0e-20).
Rationals:
Rational numbers of the form integer/
integer (e.g., 1/3 or 9/7) with an
optional leading sign (-1/2 , +7/8).
Complex:
Complex numbers of the form
num+num i or num-num i, where
num is an integer or real number.
Example include 1+3i , -1.5-2.5i ,
0+1i).

104CS 538 Spring 2002
©

String:
A sequence of characters delimited by
double quotes. Double quotes and
backslashes must be escaped using a
backslash. For example

"Hello World" "\"Wow!\""

Character:
A single character prefixed by #\ . For
example, #\a , #\0 , #\\ , #\# . Two
special characters are #\space and
#\newline .
Boolean:
True is represented as #t and false is
represented as #f .

105CS 538 Spring 2002
©

Binary Trees
Binary trees are also called
S-Expressions in Lisp and Scheme.
They are of the form
 (item . item)
where item is any atomic value or any
S-Expression. For example:

 (A . B)
 (1.2 . "xyz")
 ((A . B) . C)
 (A . (B . C))

S-Expressions are linearizations of
binary trees:

A B 1.2 "xyz"

106CS 538 Spring 2002
©

S-Expressions are built and accessed
using the predefined functions cons,
car and cdr.
cons builds a new S-Expression from
two S-Expressions that represent the
left and right children.
cons(E1,E2) = (E1 . E2)
car returns are left subtree of an
S-Expression.
car (E1 . E2) = E1
cdr returns are right subtree of an
S-Expression.
cdr (E1 . E2) = E2

C A

A B B C

107CS 538 Spring 2002
©

Lists
In Lisp and Scheme lists are a special,
widely-used form of S-Expressions.
() represents the empty or null list
(A) represents the list containing A.
By definition, (A) ≡ (A . ())

(A B) represents the list containing A
and B. By definition,
(A B) ≡ (A . (B . ()))

In general, (A B C ... Z) ≡
(A . (B . (C (Z . ()) ...)))

(A B C) ≡

A

B

C ()

108CS 538 Spring 2002
©

Function Calls
In List and Scheme, function calls are
represented as lists.
(A B C) means:
Evaluate A (to a function)
Evaluate B and C (as parameters)
Call A with B and C as its parameters
Use the value returned by the call as
the “meaning” of (A B C) .
cons , car and cdr are predefined
symbols bound to built-in functions
that build and access lists and
S-Expressions.
Literals (of type integer, real, rational,
complex, string, character and
boolean) evaluate to themselves.

109CS 538 Spring 2002
©

For example (⇒ means “evaluates
to”)
(cons 1 2) ⇒ (1 . 2)

(cons 1 ()) ⇒ (1)

(car (cons 1 2)) ⇒ 1

(cdr (cons 1 ())) ⇒ ()

But,
(car (1 2)) fails during execution!

Why?
The expression (1 2) looks like a call,
but 1 isn’t a function. We need some
way to “quote” symbols and lists we
don’t want evaluated.
(quote arg)

is a special function that returns its
argument unevaluated.

110CS 538 Spring 2002
©

Thus (quote (1 2)) doesn’t try to
evaluate the list (1 2) ; it just returns
it.
Since quotation is often needed, it
may be abbreviated using a single
quote. That is
(quote arg) ≡ 'arg

Thus
(car '(a b c)) ⇒ a

(cdr '((A) (B) (C))) ⇒
((B) (C))

(cons 'a '1) ⇒ (a . 1)

But,
('cdr '(A B)) fails!

Why?

111CS 538 Spring 2002
©

User-defined Functions
The list
(lambda (args) (body))

evaluates to a function with (args)
as its argument list and (body) as
the function body.
No quotes are needed for (args) or
(body) .
Thus
(lambda (x) (+ x 1)) evaluates

to the increment function.
Similarly,
((lambda (x) (+ x 1)) 10) ⇒

11

112CS 538 Spring 2002
©

We can bind values and functions to
global symbols using the define
function.
The general form is
(define id object)

id is not evaluated but object is. id
is bound to the value object evaluates
to.
For example,
(define pi 3.1415926535)

(define plus1
 (lambda (x) (+ x 1)))

(define pi*2 (* pi 2))

Once a symbol is defined, it evaluates
to the value it is bound to:
(plus1 12) ⇒ 13

113CS 538 Spring 2002
©

Since functions are frequently
defined, we may abbreviate
(define id
 (lambda (args) (body)))

as
(define (id args) (body))

Thus
(define (plus1 x) (+ x 1))

114CS 538 Spring 2002
©

Conditional Expressions in
Scheme

A predicate is a function that returns
a boolean value. By convention, in
Scheme, predicate names end with “?”
For example,
 number? symbol? equal?
 null? list?

In conditionals, #f is false, and
everything else, including #t , is true.
The if expression is
(if pred E1 E2)

First pred is evaluated. Depending on
its value (#f or not), either E1 or E2
is evaluated (but not both) and
returned as the value of the if
expression.

115CS 538 Spring 2002
©

For example,
 (if (= 1 (+ 0 1))

 'Yes

 'No
)

(define
 (fact n)

 (if (= n 0)

 1

 (* n (fact (- n 1)))
)
)

116CS 538 Spring 2002
©

Generalized Conditional
This is similar to a switch or case.
(cond
 (p1 e1)
 (p2 e2)
 ...
 (else en)
)

Each of the predicates (p1 , p2 , ...) is
evaluated until one is true (≠ #f).
Then the corresponding expression
(e1 , e2 , ...) is evaluated and returned
as the value of the cond. else acts
like a predicate that is always true.
Example:

(cond

 ((= a 1) 2)
 ((= a 2) 3)
 (else 4)
)

117CS 538 Spring 2002
©

Recursion in Scheme
Recursion is widely used in Scheme
and other functional programming
languages.
Rather than using a loop to step
through the elements of a list or
array, recursion breaks a problem on a
large data structure into a simpler
problem on a smaller data structure.
A good example of this approach is
the append function, which joins (or
appends) two lists into one larger list
containing all the elements of the
two input lists (in the correct order).
Note that cons is not append . cons
adds one element to the head of an
existing list.

118CS 538 Spring 2002
©

Thus
(cons '(a b) '(c d)) ⇒
 ((a b) c d)

(append '(a b) '(c d)) ⇒
 (a b c d)

The append function is predefined in
Scheme, as are many other useful
list-manipulating functions (consult
the Scheme definition for what’s
available).
It is instructive to define append
directly to see its recursive approach:
(define
 (append L1 L2)
 (if (null? L1)
 L2
 (cons (car L1)
 (append (cdr L1) L2))
)
)

119CS 538 Spring 2002
©

Let’s trace (append '(a b) '(c d))

Our definition is
(define
 (append L1 L2)
 (if (null? L1)
 L2
 (cons (car L1)
 (append (cdr L1) L2))
)
)

Now L1 = (a b) and L2 = (c d) .
(null? L1) is false, so we evaluate
(cons (car L1) (append (cdr L1) L2))
= (cons (car '(a b))

(append (cdr '(a b)) '(c d)))
= (cons 'a (append '(b) '(c d))

We need to evaluate
 (append '(b) '(c d))

In this call, L1 = (b) and L2 = (c d) .
L1 is not null, so we evaluate
(cons (car L1) (append (cdr L1) L2))
= (cons (car '(b))
 (append (cdr '(b)) '(c d)))

120CS 538 Spring 2002
©

= (cons 'b (append '() '(c d))

We need to evaluate
 (append '() '(c d))

In this call, L1 = () and L2 = (c d) .
L1 is null, so we return (c d) .
Therefore
(cons 'b (append '() '(c d)) =
(cons 'b '(c d)) = (b c d) =
(append '(b) '(c d))

Finally,
(append '(a b) '(c d)) =
(cons 'a (append '(b) '(c d)) =

(cons 'a '(b c d)) = (a b c d)

Note:
Source files for append , and other
Scheme examples, may be found in
~cs538-1/public/scheme/example1.scm,
~cs538-1/public/scheme/example2.scm,
etc.

121CS 538 Spring 2002
©

Reversing a List
Another useful list-manipulation
function is rev , which reverses the
members of a list. That is, the last
element becomes the first element,
the next-to-last element becomes the
second element, etc.
For example,
(rev '(1 2 3)) ⇒ (3 2 1)

The definition of rev is
straightforward:
(define (rev L)
 (if (null? L)
 L
 (append (rev (cdr L))
 (list (car L))
)
)
)

122CS 538 Spring 2002
©

As an example, consider
(rev '(1 2))

Here L = (1 2) . L is not null so we
evaluate
(append (rev (cdr L))
 (list (car L))) =
(append (rev (cdr '(1 2)))
 (list (car '(1 2)))) =

(append (rev '(2)) (list 1)) =
(append (rev '(2)) '(1))

We must evaluate (rev '(2))

Here L = (2) . L is not null so we
evaluate
(append (rev (cdr L))
 (list (car L))) =

(append (rev (cdr '(2)))
 (list (car '(2)))) =
(append (rev ())(list 2)) =
(append (rev ())'(2))

We must evaluate (rev '())

Here L = () . L is null so (rev '())=
()

123CS 538 Spring 2002
©

Thus (append (rev ())'(2)) =
(append () '(2)) = (2) = (rev '(2))

Finally, recall (rev '(1 2)) =
(append (rev '(2)) '(1)) =
(append '(2) '(1)) = (2 1)

As constructed, rev only reverses the
“top level” elements of a list. That is,
members of a list that themselves are
lists aren’t reversed.
For example,
 (rev '((1 2) (3 4))) =
 ((3 4) (1 2))

We can generalize rev to also reverse
list members that happen to be lists.
To do this, it will be convenient to use
Scheme’s let construct.

124CS 538 Spring 2002
©

The Let Construct
Scheme allows us to create local
names, bound to values, for use in an
expression.
The structure is
(let ((id1 val1) (id2 val2) ...)
 expr)

In this construct, val1 is evaluated
and bound to id1 , which will exist
only within this let expression. If
id1 is already defined (as a global or
parameter name) the existing
definition is hidden and the local
definition, bound to val1 , is used.
Then val2 is evaluated and bound to
id2 , Finally, expr is evaluated in a
scope that includes id1 , id2 , ...

125CS 538 Spring 2002
©

For example,
(let ((a 10) (b 20))

 (+ a b)) ⇒ 30

Using a let , the definition of
revall , a version of rev that
reverses all levels of a list, is easy:

(define (revall L)

 (if (null? L)
 L
 (let ((E (if (list? (car L))
 (revall (car L))
 (car L))))
 (append (revall (cdr L))
 (list E))
)
)
)

(revall '((1 2) (3 4))) ⇒
 ((4 3) (2 1))

126CS 538 Spring 2002
©

Subsets
Another good example of Scheme’s
recursive style of programming is
subset computation.
Given a list of distinct atoms, we
want to compute a list of all subsets
of the list values.
For example,
(subsets '(1 2 3)) ⇒

 (() (1) (2) (3) (1 2) (1 3)
 (2 3) (1 2 3))

The order of atoms and sublists is
unimportant, but all possible subsets
of the list values must be included.
Given Scheme’s recursive style of
programming, we need a recursive
definition of subsets.

127CS 538 Spring 2002
©

That is, if we have a list of all subsets
of n atoms, how do we extend this
list to one containing all subsets of
n+1 values?
First, we note that the number of
subsets of n+1 values is exactly twice
the number of subsets of n values.
For example,
(subsets '(1 2)) ⇒
(() (1) (2) (1 2)) , which

contains 4 subsets.
(subsets '(1 2 3)) contains 8
subsets (as we saw earlier).
Moreover, the extended list (of
subsets for n+1 values) is simply the
list of subsets for n values plus the
result of “distributing” the new value
into each of the original subsets.

128CS 538 Spring 2002
©

Thus (subsets '(1 2 3)) ⇒
(() (1) (2) (3) (1 2) (1 3)
 (2 3) (1 2 3)) =
(() (1) (2) (1 2)) plus

((3) (1 3) (2 3) (1 2 3))

This insight leads to a concise
program for subsets.
We will let (distrib L E) be a
function that “distributes” E into
each list in L.
For example,
(distrib ' (() (1) (2) (1 2)) 3) =

((3) (3 1) (3 2) (3 1 2))

(define (distrib L E)
 (if (null? L)
 ()
 (cons (cons E (car L))
 (distrib (cdr L) E))
)
)

129CS 538 Spring 2002
©

We will let (extend L E) extend a
list L by distributing element E
through L and then appending this
result to L.
For example,
(extend '(() (a)) 'b) ⇒

 (() (a) (b) (b a))

(define (extend L E)
 (append L (distrib L E))
)

Now subsets is easy:

(define (subsets L)

 (if (null? L)
 (list ())
 (extend (subsets (cdr L))

(car L))
)
)

130CS 538 Spring 2002
©

Data Structures in Scheme
In Scheme, lists and S-expressions are
basic. Arrays can be simulated using
lists, but access to elements “deep” in
the list can be slow (since a list is a
linked structure).
To access an element deep within a
list we can use:
• (list-tail L k)

This returns list L after removing the
first k elements. For example,
(list-tail '(1 2 3 4 5) 2) ⇒
(3 4 5)

• (list-ref L k)

This returns the k-th element in L
(counting from 0). For example,
(list-ref '(1 2 3 4 5) 2) ⇒ 3

131CS 538 Spring 2002
©

Vectors in Scheme
Scheme provides a vector type that
directly implements one dimensional
arrays.
Literals are of the form #(...)

For example, #(1 2 3) or
#(1 2.0 "three")

The function (vector? val) tests
whether val is a vector or not.
(vector? 'abc) ⇒ #f

(vector? '(a b c)) ⇒ #f

(vector? #(a b c)) ⇒ #t

The function (vector v1 v2 ...)
evaluates v1 , v2 , ... and puts them
into a vector.
(vector 1 2 3) ⇒ #(1 2 3)

132CS 538 Spring 2002
©

The function (make-vector k val)
creates a vector composed of k copies
of val . Thus
(make-vector 4 (/ 1 2)) ⇒
 #(1/2 1/2 1/2 1/2)

The function (vector-ref vect k)
returns the k-th element of vect ,
starting at position 0. It is essentially
the same as vect[k] in C or Java. For
example,
(vector-ref #(2 4 6 8 10) 3) ⇒

8

The function
(vector-set! vect k val) sets
the k-th element of vect , starting at
position 0, to be val . It is essentially
the same as vect[k]=val in C or
Java. The value returned by the
function is unspecified. The suffix “!”
in set! indicates that the function

133CS 538 Spring 2002
©

has a side-effect. For example,
(define v #(1 2 3 4 5))
(vector-set! v 2 0)
v ⇒ #(1 2 0 4 5)

Vectors aren’t lists (and lists aren’t
vectors).
Thus (car #(1 2 3)) doesn’t work.
There are conversion routines:
• (vector->list V) converts vector

V to a list containing the same values
as V. For example,
(vector->list #(1 2 3)) ⇒
 (1 2 3)

• (list->vector L) converts list L
to a vector containing the same
values as L. For example,
(list->vector '(1 2 3)) ⇒
#(1 2 3)

134CS 538 Spring 2002
©

• In general Scheme names a
conversion function from type T to
type Q as T->Q . For example,
string->list converts a string
into a list containing the characters
in the string.

135CS 538 Spring 2002
©

Records and Structs
In Scheme we can represent a record,
struct, or class object as an
association list of the form
((obj1 val1) (obj2 val2) ...)

In the association list, which is a list
of (object value) sublists, object
serves as a “key” to locate the desired
sublist.
For example, the association list
((A 10) (B 20) (C 30))

serves the same role as
struct

 { int a = 10;
 int b = 20;
 int c = 30;}

136CS 538 Spring 2002
©

The predefined Scheme function
(assoc obj alist)

checks alist (an association list) to
see if it contains a sublist with obj as
its head. If it does, the list starting
with obj is returned; otherwise #f
(indicating failure) is returned.
For example,
(define L
 '((a 10) (b 20) (c 30)))

(assoc 'a L) ⇒ (a 10)

(assoc 'b L) ⇒ (b 20)

(assoc 'x L) ⇒ #f

137CS 538 Spring 2002
©

We can use non-atomic objects as
keys too!
(define price-list

 '(((bmw m3) 40270)

 ((bmw 740) 62070)

 ((jag xj8) 55330)

 ((mb slk230) 40295)

)

)

(assoc '(bmw 740) price-list)
⇒ ((bmw 740) 62070)

138CS 538 Spring 2002
©

Using assoc , we can easily define a
structure function:
(structure key alist) will return
the value associated with key in
alist ; in C or Java notation, it
returns alist.key .
(define
 (structure key alist)
 (if (assoc key alist)

(car (cdr (assoc key alist)))
 #f
)
)

We can improve this function in two
ways:
• The same call to assoc is made

twice; we can save the value
computed by using a let expression.

• Often combinations of car and cdr
are needed to extract a value. Scheme

139CS 538 Spring 2002
©

has a number of predefined functions
that combine several calls to car and
cdr into one function. For example,
(caar x) ≡ (car (car x))

(cadr x) ≡ (car (cdr x))

(cdar x) ≡ (cdr (car x))

(cddr x) ≡ (cdr (cdr x))

Using these two insights we can now
define a better version of structure

(define
 (structure key alist)
 (let ((p (assoc key alist)))
 (if p
 (cadr p)
 #f
)
)
)

140CS 538 Spring 2002
©

What does assoc do if more than one
sublist with the same key exists?
It returns the first sublist with a
matching key. In fact, this property
can be used to make a simple and fast
function that updates association
lists:
(define
 (set-structure key alist val)
 (cons (list key val) alist)
)

141CS 538 Spring 2002
©

If we want to be more space-
efficient, we can create a version that
updates the internal structure of an
association list, using set-cdr!
which changes the cdr value of a list:
(define
 (set-structure! key alist val)
 (let ((p (assoc key alist)))
 (if p
 (begin
 (set-cdr! p (list val))
 alist
)
 (cons (list key val) alist)
)
)
)

142CS 538 Spring 2002
©

Functions are First-class
Objects

Functions may be passed as
parameters, returned as the value of a
function call, stored in data objects,
etc.
This is a consequence of the fact that
(lambda (args) (body))

evaluates to a function just as
(+ 1 1)

evaluates to an integer.

143CS 538 Spring 2002
©

Scoping
In Scheme scoping is static (lexical).
This means that non-local identifiers
are bound to containing lambda
parameters, or let values, or globally
defined values. For example,
(define (f x)
 (lambda (y) (+ x y)))

Function f takes one parameter, x . It
returns a function (of y), with x in
the returned function bound to the
value of x used when f was called.
Thus

(f 10) ≡ (lambda (y) (+ 10 y))

 ((f 10) 12) ⇒ 22

144CS 538 Spring 2002
©

Unbound symbols are assumed to be
globals; there is a run-time error if an
unbound global is referenced. For
example,
(define (p y) (+ x y))

(p 20) ; error -- x is unbound

(define x 10)

(p 20) ⇒ 30

We can use let bindings to create
private local variables for functions:
(define F
 (let ((X 1))
 (lambda () X)
)
)

F is a function (of no arguments).
(F) calls F.
(define X 22)

(F) ⇒ 1;X used in F is private

145CS 538 Spring 2002
©

We can encapsulate internal state
with a function by using private, let-
bound variables:
(define cnt
 (let ((I 0))
 (lambda ()

 (set! I (+ I 1)) I)
)
)

Now,
 (cnt) ⇒ 1

 (cnt) ⇒ 2

 (cnt) ⇒ 3

 etc.

146CS 538 Spring 2002
©

Let Bindings can be Subtle
You must check to see if the let-
bound value is created when the
function is created or when it is
called.
Compare
(define cnt

 (let ((I 0))
 (lambda ()

(set! I (+ I 1)) I)
)
)
vs.
 (define reset
 (lambda ()
 (let ((I 0))

 (set! I (+ I 1)) I)
)
)
(reset) ⇒ 1, (reset) ⇒ 1, etc.

147CS 538 Spring 2002
©

Simulating Class Objects
Using association lists and private
bound values, we can encapsulate
data and functions. This gives us the
effect of class objects.
(define (point x y)
 (list
 (list 'rect
 (lambda () (list x y)))
 (list 'polar
 (lambda ()
 (list
 (sqrt (+ (* x x) (* y y)))
 (atan (/ x y))
)
)
)
)
)

A call (point 1 1) creates an
association list of the form
((rect funct) (polar funct))

148CS 538 Spring 2002
©

We can use structure to access
components:
(define p (point 1 1))

((structure 'rect p)) ⇒ (1 1)

((structure 'polar p)) ⇒

 ()2
π
4

149CS 538 Spring 2002
©

We can add new functionality by just
adding new (id function) pairs to
the association list.
(define (point x y)
 (list
 (list 'rect
 (lambda () (list x y)))
 (list 'polar
 (lambda ()
 (list
 (sqrt (+ (* x x) (* y y)))
 (atan (/ x y))
)))
 (list 'set-rect!
 (lambda (newx newy)
 (set! x newx)
 (set! y newy)
 (list x y)
))
 (list 'set-polar!
 (lambda (r theta)
 (set! x (* r (sin theta)))
 (set! y (* r (cos theta)))
 (list r theta)
))
))

150CS 538 Spring 2002
©

Now we have
(define p (point 1 1))

((structure 'rect p)) ⇒ (1 1)

((structure 'polar p)) ⇒

 ()

((structure 'set-polar! p) 1 π/4)
⇒ (1 π/4)

 ((structure 'rect p)) ⇒

 ()

2
π
4

1

2
------- 1

2

151CS 538 Spring 2002
©

Limiting Access to Internal
Structure

We can improve upon our association
list approach by returning a single
function (similar to a C++ or Java
object) rather than an explicit list of
(id function) pairs.
The function will take the name of
the desired operation as one of its
arguments.

152CS 538 Spring 2002
©

First, let’s differentiate between
(define def1
 (let ((I 0))
 (lambda () (set! I (+ I 1)) I)
)
)

and
(define (def2)
 (let ((I 0))
 (lambda () (set! I (+ I 1)) I)
)
)

def1 is a function of zero arguments
that increments a local variable and
returns its updated value.
def2 is a function (of zero
arguments) that generates a function
of zero arguments (that increments a
local variable and returns its updated
value). Each call to def2 creates a
different function.

153CS 538 Spring 2002
©

Stack Implemented as a
Function

(define (stack)
 (let ((s ()))
 (lambda (op . args) ; var # args
 (cond
 ((equal? op 'push!)

(set! s (cons (car args) s))
 (car s))
 ((equal? op 'pop!)
 (if (null? s)
 #f
 (let ((top (car s)))
 (set! s (cdr s))
 top)))
 ((equal? op 'empty?)
 (null? s))
 (else #f)
)
)
)
)

154CS 538 Spring 2002
©

(define stk (stack)) ;new empty stack

(stk 'push! 1) ⇒ 1 ;s = (1)

(stk 'push! 3) ⇒ 3 ;s = (3 1)

(stk 'push! 'x) ⇒ x ;s = (x 3 1)

(stk 'pop!) ⇒ x ;s = (3 1)

(stk 'empty?) ⇒ #f ;s = (3 1)

(stk 'dump) ⇒ #f ;s = (3 1)

155CS 538 Spring 2002
©

Higher-Order Functions
A higher-order function is a function
that takes a function as a parameter
or one that returns a function as its
result.
A very important (and useful) higher-
order function is map, which applies a
function to a list of values and
produces a list or results:
(define (map f L)
 (if (null? L)
 ()
 (cons (f (car L))
 (map f (cdr L)))
)
)

Note: In Scheme’s built-in
implementation of map, the order of
function application is unspecified.

156CS 538 Spring 2002
©

(map sqrt '(1 2 3 4 5)) ⇒
 (1 1.414 1.732 2 2.236)

(map (lambda(x) (* x x))
 '(1 2 3 4 5)) ⇒
 (1 4 9 16 25)

Map may also be used with multiple
argument functions by supplying
more than one list of arguments:
(map + '(1 2 3) '(4 5 6)) ⇒
 (5 7 9)

157CS 538 Spring 2002
©

The Reduce Function
Another useful higher-order function
is reduce , which reduces a list of
values to a single value by repeatedly
applying a binary function to the list
values.
This function takes a binary function,
a list of data values, and an identity
value for the binary function:
(define
 (reduce f L id)
 (if (null? L)
 id
 (f (car L)
 (reduce f (cdr L) id))
)
)

(reduce + '(1 2 3 4 5) 0) ⇒
15

(reduce * '(1 2 4 6 8 10) 1)
⇒ 3840

158CS 538 Spring 2002
©

(reduce append
 '((1 2 3) (4 5 6) (7 8)) ())
⇒ (1 2 3 4 5 6 7 8)

(reduce expt '(2 2 2 2) 1) ⇒

 = 65536

(reduce expt '(2 2 2 2 2) 1)
⇒ 2 65536

(string-length
 (number->string

(reduce expt '(2 2 2 2 2) 1)))
⇒ 19729 ; digits in 2 65536

22
2
2

159CS 538 Spring 2002
©

Sharing vs. Copying
In languages without side-effects an
object can be copied by copying a
pointer (reference) to the object; a
complete new copy of the object isn’t
needed.
Hence in Scheme (define A B)
normally means

But, if side-effects are possible we
may need to force a physical copy of
an object or structure:

A B

160CS 538 Spring 2002
©

(define (copy obj)

 (if (pair? obj)

 (cons (copy (car obj))
(copy (cdr obj)))

 obj

)
)

For example,
(define A '(1 2))

(define B (cons A A))

B = ((1 2) 1 2)

A B

1

2 ()

161CS 538 Spring 2002
©

(set-car! (car B) 10)

B = ((10 2) 10 2)

(define C (cons (copy A) (copy A)))

A B

10

2 ()

C

10

2 ()

10

2 ()

162CS 538 Spring 2002
©

(set-car! (car C) 20)

C = ((20 2) 10 2)

Similar concerns apply to strings and
vectors, because their internal
structure can be changed.

C

20

2 ()

10

2 ()

163CS 538 Spring 2002
©

Shallow & Deep Copying
A copy operation that copies a
pointer (or reference) rather than the
object itself is a shallow copy.
For example, In Java,
Object O1 = new Object();

Object O2 = new Object();

O1 = O2; // shallow copy

If the structure within an object is
physically copied, the operation is a
deep copy.
In Java, for objects that support the
clone operation,
O1 = O2.clone(); // deep copy

Even in Java’s deep copy (via the
clone() operation), objects
referenced from within an object are
shallow copied. Thus given

164CS 538 Spring 2002
©

class List {

 int value;

 List next;

}

List L,M;

M = L.clone();

L.value and M.value are
independent, but L.next and M.next
refer to the same List object.
A complete deep copy, that copies all
objects linked directly or indirectly, is
expensive and tricky to implement.
(Consider a complete copy of a
circular linked list).

165CS 538 Spring 2002
©

Equality Checking in Scheme
In Scheme = is used to test for
numeric equality (including
comparison of different numeric
types). Non-numeric arguments cause
a run-time error. Thus
(= 1 1) ⇒ #t

(= 1 1.0) ⇒ #t

(= 1 2/2) ⇒ #t

(= 1 1+0.0i) ⇒ #t

166CS 538 Spring 2002
©

To compare non-numeric values, we
can use either:
pointer equivalence (do the two
operands point to the same address in
memory)
structural equivalence (do the two
operands point to structures with the
same size, shape and components,
even if they are in different memory
locations)
In general pointer equivalence is
faster but less accurate.

167CS 538 Spring 2002
©

Scheme implements both kinds of
equivalence tests.
(eqv? obj1 obj2)

This tests if obj1 and obj2 are the
exact same object. This works for
atoms and pointers to the same
structure.
(equal? obj1 obj2)

This tests if obj1 and obj2 are the
same, component by component. This
works for atoms, lists, vectors and
strings.

(eqv? 1 1) ⇒ #t

(eqv? 1 (+ 0 1)) ⇒ #t

(eqv? 1/2 (- 1 1/2)) ⇒ #t

(eqv? (cons 1 2) (cons 1 2)) ⇒
#f

(eqv? "abc" "abc") ⇒ #f

168CS 538 Spring 2002
©

(equal? 1 1) ⇒ #t

(equal? 1 (+ 0 1)) ⇒ #t

(equal? 1/2 (- 1 1/2)) ⇒ #t

(equal? (cons 1 2) (cons 1 2)) ⇒
#t

(equal? "abc" "abc") ⇒ #t

In general it is wise to use equal?
unless speed is a critical factor.

169CS 538 Spring 2002
©

I/O in Scheme
Scheme provides simple read and
write functions, directed to the
“standard in” and “standard out” files.
(read)

Reads a single Scheme object (an
atom, string, vector or list) from the
standard in file. No quoting is needed.
(write obj)

Writes a single object, obj , to the
standard out file.
(display obj)

Writes obj to the standard out file in
a more readable format. (Strings
aren’t quoted, and characters aren’t
escaped.)
(newline)

Forces a new line on standard out file.

170CS 538 Spring 2002
©

 Ports
Ports are Scheme objects that
interface with systems files. I/O to
files is normally done through a port
object bound to a system file.
(open-input-file "path to file")

This returns an input port associated
with the "path to file" string
(which is system dependent). A run-
time error is signalled if "path to
file" specifies an illegal or
inaccessible file.
(read port)

Reads a single Scheme object (an
atom, string, vector or list) from
port , which must be an input port
object.

171CS 538 Spring 2002
©

(eof-object? obj)

When the end of an input file is
reached, a special eof-object is
returned. eof-object? tests whether
an object is this special end-of-file
marker.
(open-output-file "path to file")

This returns an output port associated
with the "path to file" string
(which is system dependent). A run-
time error is signalled if "path to
file" specifies an illegal or
inaccessible file.
(write obj port)

Writes a single object, obj , to the
output port specified by port .

172CS 538 Spring 2002
©

(display obj port)

Writes obj to the output port
specified by port . display uses a more
readable format than write does.
(Strings aren’t quoted, and characters
aren’t escaped.)
(close-input-port port)

This closes the input port specified by
port .
(close-output-port port)

This closes the output port specified
by port .

173CS 538 Spring 2002
©

Example—Reading & Echoing a
File

We will iterate through a file, reading
and echoing its contents. We need a
good way to do iteration; recursion is
neither natural nor efficient here.
Scheme provides a nice generalization
of the let expression that is similar
to C’s for loop.
(let X ((id1 val1) (id2 val2) ...)
 ...
 (X v1 v2 ...)
)

A name for the let (X in the example)
is provided. As usual, val1 is
evaluated and bound to id1 , val2 is
evaluated and bound to id2 , etc. In
the body of the let, the let may be
“called” (using its name) with a fresh

174CS 538 Spring 2002
©

set of values for the let variables.
Thus (X v1 v2 ...) starts the next
iteration of the let with id1 bound to
v1 , id2 , bound to v2 , etc.
The calls look like recursion, but they
are implemented as loop iterations.
For example, in
(let loop ((x 1) (sum 0))

 (if (<= x 10)

 (loop (+ x 1) (+ sum x))

 sum

)

)

we sum the values of x from 1 to 10.
Compare it to
for (x=1,sum=0; x <= 10;
 sum+=x,x+=1)

 {}

175CS 538 Spring 2002
©

Now a function to read and echo a
file is straightforward:
(define (echo filename)
 (let (

(p (open-input-file filename)))
 (let loop ((obj (read p)))
 (if (eof-object? obj)
 #t ;normal termination
 (begin
 (write obj)
 (newline)
 (loop (read p))
)
)
)
)
)

176CS 538 Spring 2002
©

We can create an alternative to echo
that uses
(call-with-input-file
 filename function)

This function opens filename ,
creates an input port from it, and
then calls function with that port as
an argument:
(define (echo2 filename)
 (call-with-input-file filename
 (lambda(port)

(let loop ((obj (read port)))
 (if (eof-object? obj)
 #t
 (begin
 (write obj)
 (newline)
 (loop (read port))
)
)
)
)
))

177CS 538 Spring 2002
©

Control Flow in Scheme
Normally, Scheme’s control flow is
simple and recursive:
• The first argument is evaluated to get

a function.

• Remaining arguments are evaluated
to get actual parameters.

• Actual parameters are bound to the
function’s formal parameters.

• The functions’ body is evaluated to
obtain the value of the function call.

This approach routinely leads to
deeply nested expression evaluation.

178CS 538 Spring 2002
©

As an example, consider a simple
function that multiplies a list of
integers:
(define (*list L)
 (if (null? L)
 1
 (* (car L)(*list (cdr L)))
)
)

The call (*list '(1 2 3 4 5))

expands to
(* 1 (* 2 (* 3 (* 4 (* 5 1)))))

But,
what if we get clever and decide to
improve this function by noting that
if 0 appears anywhere in list L, the
product must be 0?

179CS 538 Spring 2002
©

Let’s try
(define (*list0 L)
 (cond
 ((null? L) 1)
 ((= 0 (car L)) 0)
 (else (* (car L)
 (*list0 (cdr L))))
)
)

This helps a bit—we never go past a
zero in L, but we still unnecessarily do
a sequence of pending multiplies, all
of which must yield zero!
Can we escape from a sequence of
nested calls once we know they’re
unnecessary?

180CS 538 Spring 2002
©

Exceptions
In languages like Java, a statement
may throw an exception that’s caught
by an enclosing exception handler.
Code between the statement that
throws the exception and the handler
that catches it is abandoned.
Let’s solve the problem of avoiding
multiplication of zero in Java, using
its exception mechanism:
class Node {

 int val;

 Node next;

}

class Zero extends Throwable
{};

181CS 538 Spring 2002
©

int mult (Node L) {

 try {

 return multNode(L);

 } catch (Zero z) {

 return 0;

 }

}

int multNode(Node L)

 throws Zero {

 if (L == null)

 return 1;

 else if (L.val == 0)

 throw new Zero();

 else return
 L.val * multNode(L.next);

}

In this implementation, no multiplies
by zero are ever done.

182CS 538 Spring 2002
©

Continuations
In our Scheme implementation of
*list , we’d like a way to delay doing
any multiplies until we know no zeros
appear in the list. One approach is to
build a continuation—a function that
represents the context in which a
function’s return value will be used:
(define (*listC L con)

 (cond
 ((null? L) (con 1))
 ((= 0 (car L)) 0)
 (else
 (*listC (cdr L)
 (lambda (n)
 (* n (con (car L)))))
)
)
)

183CS 538 Spring 2002
©

The top-level call is
(*listC L (lambda (x) x))

For ordinary lists *listC expands to a
series of multiplies, just like *list
did.
(define (id x) x)

(*listC '(1 2 3) id) ⇒
(*listC '(2 3)
 (lambda (n) (* n (id 1)))) ≡
(*listC '(2 3)
 (lambda (n) (* n 1))) ⇒
(*listC '(3)
 (lambda (n) (* n (* 2 1)))) ≡
(*listC '(3)
 (lambda (n) (* n 2))) ⇒
(*listC ()
 (lambda (n) (* n (* 3 2)))) ≡
(*listC () (lambda (n) (* n 6)))

⇒ (* 1 6) ⇒ 6

184CS 538 Spring 2002
©

But for a list with a zero in it, we get
a different execution path:
(*listC '(1 0 3) id) ⇒
(*listC '(0 3)

(lambda (n) (* n (id 1)))) ⇒ 0

No multiplies are done!

185CS 538 Spring 2002
©

Another Example of
Continuations

Let’s redo our list multiply example so
that if a zero is seen in the list we
return a function that computes the
product of all the non-zero values
and a parameter that is the
“replacement value” for the unwanted
zero value. The function gives the
caller a chance to correct a probable
error in the input data.
We create
(*list2 L) ≡
Product of all integers in L

if no zero appears

else
(lambda (n) (* n product-of-
all-nonzeros-in-L)

186CS 538 Spring 2002
©

(define (*list2 L) (*listE L id))

(define (*listE L con)
 (cond
 ((null? L) (con 1))
 ((= 0 (car L))
 (lambda(n)
 (* (con n)
 (*listE (cdr L) id))))
 (else
 (*listE (cdr L)
 (lambda(m)
 (* m (con (car L))))))
)
)

187CS 538 Spring 2002
©

In the following, we check to see if
*list2 returns a number or a
function. If a function is returned, we
call it with 1, effectively removing 0
from the list
(let ((V (*list2 L)))

 (if (number? V)

 V

 (V 1)

)

)

188CS 538 Spring 2002
©

For ordinary lists *list2 expands to
a series of multiplies, just like *list
did.
(*listE '(1 2 3) id) ⇒
(*listE '(2 3)
 (lambda (m) (* m (id 1)))) ≡
(*listE '(2 3)
 (lambda (m) (* m 1))) ⇒
(*listE '(3)
 (lambda (m) (* m (* 2 1)))) ≡
(*listE '(3)
 (lambda (m) (* m 2))) ⇒
(*listE ()
 (lambda (m) (* m (* 3 2)))) ≡
(*listE () (lambda (n) (* n 6)))

⇒ (* 1 6) ⇒ 6

189CS 538 Spring 2002
©

But for a list with a zero in it, we get
a different execution path:
(*listE '(1 0 3) id) ⇒
(*listE '(0 3)
 (lambda (m) (* m (id 1)))) ⇒
(lambda (n) (* (con n)
 (* listE '(3) id))) ≡
(lambda (n) (* (* n 1)

(* listE '(3) id))) ≡
(lambda (n) (* (* n 1) 3))

This function multiplies n, the
replacement value for 0, by 1 and 3,
the non-zero values in the input list.

190CS 538 Spring 2002
©

But note that only one zero value in
the list is handled correctly!
Why?
(define (*listE L con)
 (cond
 ((null? L) (con 1))
 ((= 0 (car L))
 (lambda(n)
 (* (con n)

(*listE (cdr L) id))))
 (else
 (*listE (cdr L)
 (lambda(m)
 (* m (con (car L))))))
)
)

191CS 538 Spring 2002
©

Continuations in Scheme
Scheme provides a built-in
mechanism for creating
continuations. It has a long name:
call-with-current-continuation

This name is usually abbreviated as
call/cc

(perhaps using define).
call/cc takes a single function as its
argument. That function also takes a
single argument. That is, we use
call/cc as
(call/cc funct) where
funct ≡ (lambda (con) (body))

call/cc calls the function that it is
given with the “current continuation”
as the function’s argument.

192CS 538 Spring 2002
©

Current Continuation
What is the current continuation?
It is itself a function of one
argument. The current continuation
function represents the execution
context within which the call/cc
appears. The argument to the
continuation is a value to be
substituted as the value of call/cc
in that execution context.
For example, given
(+ (fct n) 3)

the current continuation for (fct n)
is (lambda (x) (+ x 3)

Given (* 2 (+ (fct z) 10))

the current continuation for (fct z)
is (lambda (m) (* 2 (+ m 10))

193CS 538 Spring 2002
©

To use call/cc to grab a
continuation in (say) (+ (fct n) 3)
we make (fct n) the body of a
function of one argument. Let’s call
that argument return . We therefore
create
(lambda (return) (fct n))

Then
(call/cc
 (lambda (return) (fct n)))

binds the current continuation to
return and executes (fct n) .
We can ignore the current
continuation bound to return and
do a normal return
or
we can use return to force a return
to the calling context of the
call/cc .

194CS 538 Spring 2002
©

The call (return value) forces
value to be returned as the value of
call/cc in its context of call.
Example:

(define (g con) (con 5))

Now during evaluation no divide by
zero error occurs. Rather, when
(g return) is called, 5 is passed to
con , which is bound to return .
Therefore 5 is used as the value of the
call to call/cc , and 50 is computed.

(* (call/cc (lambda(return)
 (/ (g return) 0))) 10)

return

195CS 538 Spring 2002
©

Continuations are Just
Functions

Continuations may be saved in
variables or data structures and called
in the future to “reactive” a
completed or suspended computation.
(define CC ())
(define (F)
 (let (
 (v (call/cc
 (lambda(here)
 (set! CC here)
 1))))

(display "The ans is: ")
 (display v)

(newline)
))

This displays The ans is: 1

At any time in the future, (CC 10)
will display The ans is: 10

196CS 538 Spring 2002
©

List Multiplication Revisited
We can use call/cc to reimplement
the original *list to force an
immediate return of 0 (much like a
throw in Java):
(define (*listc L return)
 (cond
 ((null? L) 1)
 ((= 0 (car L)) (return 0))
 (else (* (car L)

(*listc (cdr L) return)))
))

(define (*list L)
 (call/cc
 (lambda (return)
 (*listc L return)
)))

A 0 in L forces a call of (return 0)
which makes 0 the value of call/cc .

197CS 538 Spring 2002
©

Interactive Replacement of
Error Values

Using continuations, we can also redo
*listE so that zeroes can be replaced
interactively! Multiple zeroes (in both
original and replacement values) are
correctly handled.
(define (*list L)
 (let (
 (V (call/cc
 (lambda (here)
 (*liste L here)))))
 (if (number? V)
 V
 (begin
 (display
 "Enter new value for 0")
 (newline) (newline)
 (V (read))
)
)
)
)

198CS 538 Spring 2002
©

(define (*liste L return)
 (if (null? L)
 1
 (let loop ((value (car L)))
 (if (= 0 value)
 (loop
 (call/cc

(lambda (x) (return x))))
 (* value
 (*liste (cdr L) return))
)
)
)
)

If a zero is seen, *liste passes back
to the caller (via return) a
continuation that will set the next
value of value . This value is checked,
so if it is itself zero, a substitute is
requested. Each occurrence of zero
forces a return to the caller for a
substitute value.

199CS 538 Spring 2002
©

Implementing Coroutines with
call/cc

Coroutines are a very handy
generalization of subroutines. A
coroutine may suspend its execution
and later resume from the point of
suspension. Unlike subroutines,
coroutines do no have to complete
their execution before they return.
Coroutines are useful for
computation of long or infinite
streams of data, where we wish to
compute some data, use it, compute
additional data, use it, etc.
Subroutines aren’t always able to
handle this, as we may need to save a
lot of internal state to resume with
the correct next value.

200CS 538 Spring 2002
©

Producer/Consumer using
Coroutines

The example we will use is one of a
consumer of a potentially infinite
stream of data. The next integer in
the stream (represented as an
unbounded list) is read. Call this
value n. Then the next n integers are
read and summed together. The
answer is printed, and the user is
asked whether another sum is
required. Since we don’t know in
advance how many integers will be
needed, we’ll use a coroutine to
produce the data list in segments,
requesting another segment as
necessary.

201CS 538 Spring 2002
©

(define (consumer)

 (next 0) ; reset next function
 (let loop ((data (moredata)))
 (let (
 (sum+restoflist
 (sum-n-elems (car data)
 (cons 0 (cdr data)))))
 (display (car sum+restoflist))
 (newline)
 (display "more? ")
 (if (equal? (read) ’y)
 (if (= 1

(length sum+restoflist))
 (loop (moredata))

(loop (cdr sum+restoflist))
)

 #t ; Normal completion
)
)
)
)

202CS 538 Spring 2002
©

Next, we’ll consider sum-n-elems ,
which adds the first element of list (a
running sum) to the next n elements
on the list. We’ll use moredata to
extend the data list as needed.
(define (sum-n-elems n list)
 (cond
 ((= 0 n) list)
 ((null? (cdr list))
 (sum-n-elems n

(cons (car list)(moredata))))
 (else
 (sum-n-elems (- n 1)
 (cons (+ (car list)
 (cadr list))
 (cddr list))))

)
)

203CS 538 Spring 2002
©

The function moredata is called
whenever we need more data. Initially
a producer function is called to get
the initial segment of data. producer
actually returns the next data
segment plus a continuation (stored
in producer-cc) used to resume
execution of producer when the
next data segment is required.

204CS 538 Spring 2002
©

(define moredata
 (let ((producer-cc ()))
 (lambda ()
 (let (
 (data+cont
 (if (null? producer-cc)
 (call/cc (lambda (here)

(producer here)))
 (call/cc (lambda (here)
 (producer-cc here)))
)
))
 (set! producer-cc
 (cdr data+cont))
 (car data+cont)
)
)
)
)

205CS 538 Spring 2002
©

Function (next z) returns the next z
integers in an infinite sequence that
starts at 1. A value z=0 is a special
flag indicating that the sequence
should be reset to start at 1.
(define next
 (let ((i 1))
 (lambda (z)
 (if (= 0 z)
 (set! i 1)
 (let loop

((cnt z) (val i) (ints ()))
 (if (> cnt 0)
 (loop (- cnt 1)
 (+ val 1)
 (append ints
 (list val)))
 (begin
 (set! i val)
 ints
)
)
)
))))

206CS 538 Spring 2002
©

The function producer generates an
infinite sequence of integers
(1,2,3,...). It suspends every 5/10/15/
25 elements and returns control to
moredata .
(define (producer initial-return)
 (let loop
 ((return initial-return))
 (set! return
 (call/cc (lambda (here)

(return (cons (next 5)
 here)))))
 (set! return
 (call/cc (lambda (here)

(return (cons (next 10)
 here)))))
 (set! return
 (call/cc (lambda (here)
 (return (cons (next 15)
 here)))))
 (loop
 (call/cc (lambda (here)

(return (cons (next 25)
 here)))))
))

207CS 538 Spring 2002
©

Reading Assignment
• MULTILISP: a language for concurrent

symbolic computation,
by Robert H. Halstead
(linked from class web page)

208CS 538 Spring 2002
©

Lazy Evaluation
Lazy evaluation is sometimes called
“call by need.” We do an evaluation
when a value is used; not when it is
defined.
Scheme provides for lazy evaluation:
(delay expression)

Evaluation of expression is delayed.
The call returns a “promise” that is
essentially a lambda expression.
(force promise)

A promise, created by a call to delay ,
is evaluated. If the promise has
already been evaluated, the value
computed by the first call to force is
reused.

209CS 538 Spring 2002
©

Example:
Though and is predefined, writing a
correct implementation for it is a bit
tricky.
The obvious program
(define (and A B)

 (if A

 B

 #f

)

)

is incorrect since B is always
evaluated whether it is needed or not.
In a call like
(and (not (= i 0)) (> (/ j i) 10))

unnecessary evaluation might be
fatal.

210CS 538 Spring 2002
©

An argument to a function is strict if
it is always used. Non-strict
arguments may cause failure if
evaluated unnecessarily.
With lazy evaluation, we can define a
more robust and function:
(define (and A B)

 (if A

 (force B)

 #f

)

)

This is called as:
(and (not (= i 0))
 (delay (> (/ j i) 10)))

Note that making the programmer
remember to add a call to delay is
unappealing.

211CS 538 Spring 2002
©

Delayed evaluation also allows us a
neat implementation of suspensions.
The following definition of an infinite
list of integers clearly fails
(define (inflist i)

 (cons i (inflist (+ i 1))))

But with use of delays we get the
desired effect in finite time:
(define (inflist i)
 (cons i
 (delay (inflist (+ i 1)))))

Now a call like (inflist 1) creates

1 promise for
(inflist 2)

212CS 538 Spring 2002
©

We need to slightly modify how we
explore suspended infinite lists. We
can’t redefine car and cdr as these
are far too fundamental to tamper
with.
Instead we’ll define head and tail to
do much the same job:
(define head car)

(define (tail L)

 (force (cdr L)))

head looks at car values which are
fully evaluated.
tail forces one level of evaluation of
a delayed cdr and saves the
evaluated value in place of the
suspension (promise).

213CS 538 Spring 2002
©

Given
(define IL (inflist 1))

(head (tail IL)) returns 2 and
expands IL into

2 promise for
(inflist 3)

1

214CS 538 Spring 2002
©

Exploiting Parallelism
Conventional procedural
programming languages are difficult
to compile for multiprocessors.
Frequent assignments make it
difficult to find independent
computations.
Consider (in Fortran):

 do 10 I = 1,1000
 X(I) = 0
 A(I) = A(I+1)+1
 B(I) = B(I-1)-1
 C(I) = (C(I-2) + C(I+2))/2
10 continue

This loop defines 1000 values for
arrays X, A, B and C.

215CS 538 Spring 2002
©

Which computations can be done in
parallel, partitioning parts of an array
to several processors, each operating
independently?
• X(I) = 0

Assignments to X can be readily
parallelized.

• A(I) = A(I+1)+1

Note that each computation of A(I)
uses an A(I+1) value that is yet to
be changed. Thus a whole array of
new A values can be computed from
an array of “old” A values in parallel.

• B(I) = B(I-1)-1

This is less obvious. Each B(I) uses
B(I-1) which is defined in terms of
B(I-2) , etc. Ultimately all new B
values depend only on B(0) and I .
That is, B(I) = B(0) - I . So this

216CS 538 Spring 2002
©

computation can be parallelized, but
it takes a fair amount of insight to
realize it.

• C(I) = (C(I-2) + C(I+2))/2

It is clear that even and odd elements
of C don’t interact. Hence two
processors could compute even and
odd elements of C in parallel. Beyond
this, since both earlier and later C
values are used in each computation
of an element, no further means of
parallel evaluation is evident. Serial
evaluation will probably be needed
for even or odd values.

217CS 538 Spring 2002
©

Exploiting Parallelism in
Scheme

Assume we have a shared-memory
multiprocessor. We might be able to
assign different processors to
evaluate various independent
subexpressions.
For example, consider
(map (lambda(x) (* 2 x))
 '(1 2 3 4 5))
We might assign a processor to each
list element and compute the lambda
function on each concurrently:

1 2 3 4 5

2 4 6 8 10

Processor 1 Processor 5...

218CS 538 Spring 2002
©

How is Parallelism Found?
There are two approaches:
• We can use a “smart” compiler that is

able to find parallelism in existing
programs written in standard serial
programming languages.

• We can add features to an existing
programming language that allows a
programmer to show where parallel
evaluation is desired.

219CS 538 Spring 2002
©

Concurrentization
Concurrentization (often called
parallelization) is process of
automatically finding potential
concurrent execution in a serial
program.
Automatically finding current
execution is complicated by a number
of factors:
• Data Dependence

Not all expressions are independent. We
may need to delay evaluation of an
operator or subprogram until its
operands are available.
Thus in
(+ (* x y) (* y z))

we can’t start the addition until both
multiplications are done.

220CS 538 Spring 2002
©

• Control Dependence
Not all expressions need be (or should
be) evaluated.
In
(if (= a 0)

0

 (/ b a))

we don’t want to do the division until
we know a ≠ 0.

• Side Effects
If one expression can write a value that
another expression might read, we
probably will need to serialize their
execution.
Consider
(define rand!
 (let ((seed 99))
 (lambda ()
 (set! seed
 (mod (* seed 1001) 101101))
 seed
)))

221CS 538 Spring 2002
©

Now in
(+ (f (rand!)) (g (rand!)))

we can’t evaluate (f (rand!)) and
(g (rand!)) in parallel, because of
the side effect of set! in rand! . In
fact if we did, f and g might see exactly
the same “random” number! (Why?)

• Granularity
Evaluating an expression concurrently
has an overhead (to setup a concurrent
computation). Evaluating some very
simple expressions (like (car x) or
(+ x 1)) in parallel isn’t worth the
overhead cost.
Estimating where the “break even”
threshold is may be tricky.

222CS 538 Spring 2002
©

Utility of Concurrentization
Concurrentization has been most
successful in engineering and
scientific programs that are very
regular in structure, evaluating large
multidimensional arrays in simple
nested loops. Many very complex
simulations (weather, fluid dynamics,
astrophysics) are run on
multiprocessors after extensive
concurrentization.
Concurrentization has been far less
successful on non-scientific programs
that don’t use large arrays
manipulated in nested for loops. A
compiler, for example, is difficult to
run (in parallel) on a multiprocessor.

223CS 538 Spring 2002
©

Concurrentization within
Processors

Concurrentization is used extensively
within many modern uniprocessors.
Pentium and PowerPC processors
routinely execute several instructions
in parallel if they are independent
(e.g., read and write distinct
registers). This are superscalar
processors.
These processors also routinely
speculate on execution paths,
“guessing” that a branch will (or
won’t) be taken even before the
branch is executed! This allows for
more concurrent execution than if
strictly “in order” execution is done.
These processors are called “out of
order” processors.

224CS 538 Spring 2002
©

Adding Parallel Features to
Programming Languages.

It is common to take an existing serial
programming language and add
features that support concurrent or
parallel execution. For example
versions for Fortran (like HPF—High
Performance Fortran) add a parallel
do loop that executes individual
iterations in parallel.
Java supports threads, which may be
executed in parallel. Synchronization
and mutual exclusion are provided to
avoid unintended interactions.

225CS 538 Spring 2002
©

Reading Assignment
• Sethi: Chapters 8 and 9

• Introduction to Standard ML
 (linked from class web page)

• Scott: Section 7.1 and 7.2

226CS 538 Spring 2002
©

Multilisp
Multilisp is a version of Scheme
augmented with three parallel
evaluation mechanisms:
• Pcall

Arguments to a call are evaluated in
parallel.

• Future
Evaluation of an expression starts
immediately. Rather than waiting for
completion of the computation, a
“future” is returned. This future will
eventually transform itself into the
result value (when the computation
completes)

• Delay
Evaluation is delayed until the result
value is really needed.

227CS 538 Spring 2002
©

The Pcall Mechanism
Pcall is an extension to Scheme’s
function call mechanism that causes
the function and its arguments to be
all computed in parallel.
Thus
(pcall F X Y Z)

causes F, X, Y and Z to all be
evaluated in parallel. When all
evaluations are done, F is called with
X, Y and Z as its parameters (just as in
ordinary Scheme).
Compare
(+ (* X Y) (* Y Z))

with
(pcall + (* X Y) (* Y Z))

228CS 538 Spring 2002
©

It may not look like pcall can give
you that much parallel execution, but
in the context of recursive definitions,
the effect can be dramatic.
Consider treemap , a version of map
that operates on binary trees
(S-expressions).
(define (treemap fct tree)

 (if (pair? tree)

 (pcall cons

 (treemap fct (car tree))

 (treemap fct (cdr tree))

)

 (fct tree)

))

Look at the execution of treemap on
the tree
 (((1 . 2) . (3 . 4)) .

 ((5 . 6) . (7 . 8)))

229CS 538 Spring 2002
©

We start with one call that uses the
whole tree. This splits into two
parallel calls, one operating on
((1 . 2) . (3 . 4))

and the other operating on
((5 . 6) . (7 . 8))

Each of these calls splits into 2 calls,
and finally we have 8 independent
calls, each operating on the values 1
to 8.

230CS 538 Spring 2002
©

Futures
Evaluation of an expression as a
future is the most interesting feature
of Multilisp.
The call
(future expr)

begins the evaluation of expr . But
rather than waiting for expr ’s
evaluation to complete, the call to
future returns immediately with a
new kind of data object—a future.
This future is actually an “IOU.” When
you try to use the value of the future,
the computation of expr may or may
not be completed. If it is, you see the
value computed instead of the
future—it automatically transforms
itself. Thus evaluation of expr
appears instantaneous.

231CS 538 Spring 2002
©

If the computation of expr is not yet
completed, you are forced to wait
until computation is completed. Then
you may use the value and resume
execution. But this is exactly what
ordinary evaluation does anyway—you
begin evaluation of expr and wait
until evaluation completes and
returns a value to you!

232CS 538 Spring 2002
©

To see the usefulness of futures,
consider the usual definition of
Scheme’s map function:
(define (map f L)
 (if (null? L)
 ()
 (cons (f (car L))
 (map f (cdr L)))
)
)

If we have a call
(map slow-function long-list)

where slow-function executes
slowly and long-list is a large data
structure, we can expect to wait quite
a while for computation of the result
list to complete.

233CS 538 Spring 2002
©

Now consider fastmap , a version of
map that uses futures:
(define (fastmap f L)
 (if (null? L)
 ()
 (cons
 (future (f (car L)))
 (fastmap f (cdr L))
)
)
)

Now look at the call
(fastmap slow-function long-list)

We will exploit a useful aspect of
futures—they can be cons’ed together
without delay, even if the
computation isn’t completed yet.
Why? Well a cons just stores a pair
of pointers, and it really doesn’t
matter what the pointers reference (a
future or an actual result value).

234CS 538 Spring 2002
©

The call to fastmap can actually
return before any of the call to slow-
function have completed:

Eventually all the futures
automatically transform themselves
into data values:

future1

future2

future3 ...

answer1

answer2

answer3 ...

235CS 538 Spring 2002
©

Note that pcall can be implemented
using futures.
That is, instead of
(pcall F X Y Z)

we can use
((future F) (future X) (future Y)
 (future Z))

In fact the latter version is actually
more parallel—execution of F can
begin even if all the parameters aren’t
completely evaluated.

236CS 538 Spring 2002
©

Another Example of Futures
The following function, partition ,
will take a list and a data value
(called pivot). partition will
partition the list into two sublists:
(a) Those elements ≤ pivot

(b) Those elements > pivot
(define (partition pivot L)
 (if (null? L)
 (cons () ())
 (let ((tail-part

(partition pivot (cdr L))))
 (if (<= (car L) pivot)
 (cons

(cons (car L) (car tail-part))
(cdr tail-part))

 (cons
(car tail-part))
(cons (car L) (cdr tail-part))

)
)))

237CS 538 Spring 2002
©

We want to add futures to partition,
but where?
It makes sense to use a future when a
computation may be lengthy and we
may not need to use the value
computed immediately.
What computation fits that pattern?
The computation of tail-part . We’ll
mark it in a blue box to show we plan
to evaluate it using a future:

238CS 538 Spring 2002
©

(define (partition pivot L)
 (if (null? L)
 (cons () ())
 (let ((tail-part

(partition pivot (cdr L))))
 (if (<= (car L) pivot)
 (cons

(cons (car L) (car tail-part))
(cdr tail-part))

 (cons
(car tail-part))
(cons (car L) (cdr tail-part))

)
)))

But this one change isn’t enough! We
soon access the car and cdr of
tail-part , which forces us to wait
for its computation to complete. To
avoid this delay, we can place the
four reference to car or cdr of
tail-part into futures too:

239CS 538 Spring 2002
©

(define (partition pivot L)
 (if (null? L)
 (cons () ())
 (let ((tail-part

(partition pivot (cdr L))))
 (if (<= (car L) pivot)
 (cons

(cons (car L) (car tail-part))
(cdr tail-part))

 (cons
(car tail-part))
(cons (car L) (cdr tail-part))

)
)))

240CS 538 Spring 2002
©

Now we can build the initial part of
the partitioned list (that involving
pivot and (car L) independently of
the recursive call of partition ,
which completes the rest of the list.
For example,
(partition 17 '(5 3 8 ...))

creates a future (call it future1) to
compute
(partition 17 '(3 8 ...))

It also creates future2 to compute
(car tail-part) and future3 to
compute (cdr tail-part) . The call
builds

5 future2

future3

241CS 538 Spring 2002
©

ML—Meta Language
SML is Standard ML, a popular ML
variant.
ML is a functional language that is
designed to be efficient and type-
safe. It demonstrates that a
functional language need not use
Scheme’s odd syntax and need not
bear the overhead of dynamic typing.
SML’s features and innovations
include:
1. Strong, compile-time typing.
2. Automatic type inference rather

than user-supplied type
declarations.

3. Polymorphism, including “type
variables.”

242CS 538 Spring 2002
©

4. Pattern-directed Programming
fun len([]) = 0

 | len(a::b) = 1+len(b);

5. Exceptions
6. First-class functions
7. Abstract Data Types
 coin of int |

bill of int |
check of string*real;
val dime = coin(10);

A good ML reference is
“Elements of ML Programming,”
by Jeffrey Ullman
(Prentice Hall, 1998)

243CS 538 Spring 2002
©

SML is Interactive
You enter a definition or expression,
and SML returns a result with an
inferred type.
The command
 use "file name";

loads a set of ML definitions from a
file.
For example (SML responses are in
blue):
21;
val it = 21 : int

(2 div 3);
val it = 0 : int

true;
val it = true : bool

"xyz";
val it = "xyz" : string

244CS 538 Spring 2002
©

Basic SML Predefined Types
• Unit

Its only value is () . Type unit is
similar to void in C; it is used where
a type is needed, but no “real” type is
appropriate. For example, a call to a
write function may return unit as its
result.

• Integer
Constants are sequences of digits.
Negative values are prefixed with a ~
rather than a - (- is a binary
subtraction operator). For example,
~123 is negative 123 .
Standard operators include
+ - * div mod
< > <= >= = <>

245CS 538 Spring 2002
©

• Real
Both fractional (123.456) and
exponent forms (10e7) are allowed.
Negative signs and exponents use ~
rather than - (~10.0e~12).
Standard operators include
+ - * /
< > <= >=

Note that = and <> aren’t allowed!
(Why?)
Conversion routines include
real(int) to convert an int to a
real ,
floor(real) to take the floor of a
real ,
ceil(real) to take the ceiling of a
real .
round(real) to round a real ,
trunc(real) to truncate a real .

246CS 538 Spring 2002
©

For example, real(3) returns 3.0 ,
floor(3.1) returns 3,
ceiling(3.3) returns 4,
round(~3.6) returns ~4,
trunc(3.9) returns 3.
Mixed mode expressions, like
1 + 2.5 aren’t allowed; you must do
explicit conversion, like
real(1) + 2.5

• Strings
Strings are delimited by double
quotes. Newlines are \n , tabs are \t ,
and \" and \\ escape double quotes
and backslashes. E.g. "Bye now\n"
The ^ operator is concatenation.
"abc" ^ "def" = "abcdef"

The usual relation operators are
provided: < > <= >= = <>

247CS 538 Spring 2002
©

• Characters
Single characters are delimited by
double quotes and prefixed by a #.
For example, #"a" or #"\t" . A
character is not a string of length one.
The str function may be used to
convert a character into a string. Thus
str(#"a") = "a"

• Boolean
Constants are true and false .
Operators include andalso (short-
circuit and), orelse (short-circuit
or), not , = and <>.
A conditional expression,
(if boolval v 1 else v 2) is
available.

248CS 538 Spring 2002
©

Tuples
A tuple type, composed of two or
more values of any type is available.
Tuples are delimited by parentheses,
and values are separated by commas.
Examples include:
(1,2);
val it = (1,2) : int * int

("xyz",1=2);
val it = ("xyz",false) :
 string * bool

(1,3.0,false);
val it = (1,3.0,false) :
 int * real * bool

(1,2,(3,4));
val it = (1,2,(3,4)) :
int * int * (int * int)

249CS 538 Spring 2002
©

Equality is checked componentwise:
(1,2) = (0+1,1+1);
val it = true : bool

(1,2,3) = (1,2) causes a compile-
time type error (tuples must be of the
same length and have corresponding
types to be compared).
#i selects the i -th component of a
tuple (counting from 1). Hence
#2(1,2,3);
val it = 2 : int

250CS 538 Spring 2002
©

Lists
Lists are required to have a single
element type for all their elements;
their length is unbounded.
Lists are delimited by [and] and
elements are separated by commas.
Thus [1,2,3] is an integer list. The
empty (or null) list is [] or nil .
The cons operator is ::

Hence [1,2,3] ≡ 1::2::3::[]

Lists are automatically typed by ML:
[1,2];
val it = [1,2] : int list

251CS 538 Spring 2002
©

Cons
Cons is an infix operator represented
as ::

The left operand of :: is any value of
type T.
The right operand of :: is any list of
type T list .
The result of :: is a list of type
T list .

Hence :: is polymorphic.
[] is the empty list. It has a type
'a list . The symbol 'a , read as
“alpha” or “tic a” is a type variable.
Thus [] is a polymorphic constant.

252CS 538 Spring 2002
©

List Equality
Two lists may be compared for
equality if they are of the same type.
Lists L1 and L2 are considered equal
if:
(1) They have the same number of
 elements
(2) Corresponding members of the
 two lists are equal.

List Operators
hd ≡ head of list operator ≈ car

tl ≡ tail of list operator ≈ cdr

null ≡ null list predicate ≈ null?

@≡ infix list append operator ≈
append

253CS 538 Spring 2002
©

Records
Their general form is
{name 1=val 1, name 2=val 2, ... }

Field selector names are local to a
record.
For example:
{a=1,b=2};

val it = {a=1,b=2} :
 {a:int, b:int}

{a=1,b="xyz"};
val it = {a=1,b="xyz"} :
 {a:int, b:string}

{a=1.0,b={c=[1,2]}};
val it = {a=1.0,b={c=[1,2]}} :
{a:real, b:{c:int list}}

254CS 538 Spring 2002
©

The order of fields is irrelevant;
equality is tested using field names.
{a=1,b=2}={b=2,a=2-1};
val it = true : bool

#id extracts the field named id from
a record.
#b {a=1,b=2} ;

val it = 2 : int

255CS 538 Spring 2002
©

Identifiers
There are two forms:
• Alphanumeric (excluding reserved words)

Any sequence of letters, digits, single
quotes and underscores; must begin
with a letter or single quote.
Case is significant. Identifiers that
begin with a single quote are type
variables.
Examples include:
abc a10 'polar sum_of_20

• Symbolic
Any sequence (except predefined
operators) of
! % & + - / : < = > ? @ \ ~ ^ | # *

Usually used for user-defined
operators.
Examples include: ++ <=> !=

256CS 538 Spring 2002
©

Comments
Of form
(* text *)

May cross line boundaries.

Declaration of Values
The basic form is
val id = expression;

This defines id to be bound to
expression ; ML answers with the
name and value defined and the
inferred type.
For example
val x = 10*10;
val x = 100 : int

257CS 538 Spring 2002
©

Redefinition of an identifier is OK,
but this is redefinition not
assignment;
Thus
val x = 100;

val x = (x=100);

is fine; there is no type error even
though the first x is an integer and
then it is a boolean.
val x = 100 : int

val x = true : bool

258CS 538 Spring 2002
©

Examples
val x = 1;
val x = 1 : int

val z = (x,x,x);
val z = (1,1,1) : int * int * int

val L = [z,z];
val L = [(1,1,1),(1,1,1)] :
 (int * int * int) list

val r = {a=L};
val r = {a=[(1,1,1),(1,1,1)]} :
{a:(int * int * int) list}

After rebinding, the “nearest” (most
recent) binding is used.

259CS 538 Spring 2002
©

The and symbol (not boolean and) is
used for simultaneous binding:
val x = 10;
val x = 10 : int

val x = true and y = x;
val x = true : bool

val y = 10 : int

Local definitions are temporary value
definitions:
local

 val x = 10

 in

 val u = x*x;

 end;
val u = 100 : int

260CS 538 Spring 2002
©

Let bindings are used in expressions:
let

 val x = 10

in
 5*x

end;
val it = 50 : int

261CS 538 Spring 2002
©

Patterns
In Scheme (and most other
languages) we need access or
decomposition functions to access the
components of a structured object.
Thus we might have
(let ((h (car L) (t (cdr L)))

 body)

Here car and cdr are used as access
functions to locate the parts of L we
want to access.
In ML, we can access components of
lists (or tuples, or records) directly by
using patterns. The context in which
the identifier appears tells us the part
of the structure it references.

262CS 538 Spring 2002
©

val x = (1,2);
val x = (1,2) : int * int

val (h,t) = x;
val h = 1 : int

val t = 2 : int

val L = [1,2,3];
val L = [1,2,3] : int list

val [v1,v2,v3] = L;
val v1 = 1 : int

val v2 = 2 : int

val v3 = 3 : int

val [1,x,3] = L;
val x = 2 : int

val [1,rest] = L;
(* This is illegal. Why? *)

val yy::rest = L;
val yy = 1 : int

val rest = [2,3] : int list

263CS 538 Spring 2002
©

Wildcards
An underscore (_) may be used as a
“wildcard” or “don’t care” symbol. It
matches part of a structure without
defining an new binding.
val zz::_ = L;
val zz = 1 : int

Pattern matching works in records
too.
val r = {a=1,b=2};
val r = {a=1,b=2} :
 {a:int, b:int}

val {a=va,b=vb} = r;
val va = 1 : int

val vb = 2 : int

val {a=wa,b=_}=r;
val wa = 1 : int

val {a=za, ...}=r;
val za = 1 : int

264CS 538 Spring 2002
©

Patterns can be nested too.
val x = ((1,3.0),5);
val x = ((1,3.0),5) :
 (int * real) * int

val ((1,y),_)=x;
val y = 3.0 : real

265CS 538 Spring 2002
©

Functions
Functions take a single argument
(which can be a tuple).
Function calls are of the form
function_name argument;

For example
size "xyz";

cos 3.14159;

The more conventional form
size("xyz"); or cos(3.14159);

is OK (the parentheses around the
argument are allowed, but
unnecessary).
The form (size "xyz") or
(cos 3.14159)

is OK too.

266CS 538 Spring 2002
©

Note that the call
plus(1,2);

passes one argument, the tuple (1,2)

to plus .
The call dummy();

passes one argument, the unit value,
to dummy.
All parameters are passed by value.

267CS 538 Spring 2002
©

Function Types
The type of a function in ML is
denoted as T1->T2 . This says that a
parameter of type T1 is mapped to a
result of type T2.
The symbol fn denotes a value that is
a function.
Thus
size;
val it = fn : string -> int

not;
val it = fn : bool -> bool

Math.cos;
val it = fn : real -> real

(Math is an ML structure—an external
library member that contains
separately compiled definitions).

268CS 538 Spring 2002
©

User-Defined Functions
The general form is
fun name arg = expression;

ML answers back with the name
defined, the fact that it is a function
(the fn symbol) and its inferred type.
For example,
fun twice x = 2*x;
val twice = fn : int -> int

fun twotimes(x) = 2*x;
val twotimes = fn : int -> int

fun fact n =

 if n=0

 then 1

 else n*fact(n-1);
val fact = fn : int -> int

269CS 538 Spring 2002
©

fun plus(x,y) :int = x+y;
val plus = fn : int * int -> int

The :int suffix is a type constraint.
It is needed to help ML decide that +
is integer plus rather than real plus.

270CS 538 Spring 2002
©

Patterns In Function
Definitions

The following defines a predicate that
tests whether a list, L is null (the
predefined null function already
does this).
fun isNull L =
 if L=[] then true else
false;
val isNull = fn : 'a list -> bool

However, we can decompose the
definition using patterns to get a
simpler and more elegant definition:
 fun isNull [] = true

 | isNull(_::_) = false;
val isNull = fn : 'a list -> bool

271CS 538 Spring 2002
©

The “| ” divides the function
definition into different argument
patterns; no explicit conditional logic
is needed. The definition that matches
a particular actual parameter is
automatically selected.
fun fact(1) = 1

 | fact(n) = n*fact(n-1);
val fact = fn : int -> int

If patterns that cover all possible
arguments aren’t specified, you may
get a run-time Match exception.
If patterns overlap you may get a
warning from the compiler.

272CS 538 Spring 2002
©

fun append([],L) = L

 | append(hd::tl,L) =
hd::append(tl,L);

val append = fn :
 'a list * 'a list -> 'a list

If we add the pattern
append(L,[]) = L

we get a redundant pattern warning
(Why?)
fun append ([],L) = L

 | append(hd::tl,L) =
hd::append(tl,L)

 | append(L,[]) = L;
stdIn:151.1-153.20 Error: match
redundant

 (nil,L) => ...

 (hd :: tl,L) => ...

 --> (L,nil) => ...

273CS 538 Spring 2002
©

But a more precise decomposition is
fine:
fun append ([],L) = L

| append(hd::tl,hd2::tl2) =
 hd::append(tl,hd2::tl2)

 | append(hd::tl,[]) =
 hd::tl;
val append = fn :
 'a list * 'a list -> 'a list

274CS 538 Spring 2002
©

Function Types Can be
Polytypes

Recall that 'a , 'b , ... represent type
variables. That is, any valid type may
be substituted for them when
checking type correctness.
ML said the type of append is
val append = fn :
 'a list * 'a list -> 'a list

Why does 'a appear in three places?
We can define eitherNull , a
predicate that determines whether
either of two lists is null as
fun eitherNull(L1,L2) =
 null(L1) orelse null(L2);
val eitherNull =
 fn : ’a list * ’b list -> bool

Why are both 'a and 'b used in
eitherNull ’s type?

275CS 538 Spring 2002
©

Currying
ML chooses the most general (least-
restrictive) type possible for user-
defined functions.
Functions are first-class objects, as in
Scheme.
The function definition
fun f x y = expression;

defines a function f (of x) that
returns a function (of y).
Reducing multiple argument
functions to a sequence of one
argument functions is called currying
(after Haskell Curry, a mathematician
who popularized the approach).

276CS 538 Spring 2002
©

Thus
fun f x y = x :: [y];
val f = fn : 'a -> 'a -> 'a list

says that f takes a parameter x , of
type 'a , and returns a function (of y,
whose type is 'a) that returns a list
of 'a .
Contrast this with the more
conventional
fun g(x,y) = x :: [y];
val g = fn : 'a * 'a -> 'a list

Here g takes a pair of arguments
(each of type 'a) and returns a value
of type 'a list.
The advantage of currying is that we
can bind one argument and leave the
remaining argument(s) free.

277CS 538 Spring 2002
©

For example
f(1);

is a legal call. It returns a function of
type
fn : int -> int list

The function returned is equivalent to
fun h b = 1 :: [b];
val h = fn : int -> int list

278CS 538 Spring 2002
©

Map Revisited
ML supports the map function, which
can be defined as
fun map(f,[]) = []
 | map(f,x::y) =
 (f x) :: map(f,y);
val map =
fn : ('a -> 'b) * 'a list -> 'b list

This type says that map takes a pair of
arguments. One is a function from
type 'a to type 'b . The second
argument is a list of type 'a . The
result is a list of type 'b .
In curried form map is defined as
fun map f [] = []
 | map f (x::y) =
 (f x) :: map f y;
val map =
 fn : ('a -> 'b) ->
 'a list -> 'b list

279CS 538 Spring 2002
©

This type says that map takes one
argument that is a function from type
'a to type 'b . It returns a function
that takes an argument that is a list
of type 'a and returns a list of type
'b .
The advantage of the curried form of
map is that we can now use map to
create “specialized” functions in
which the function that is mapped is
fixed.
For example,
val neg = map not;
val neg =
 fn : bool list -> bool list

neg [true,false,true];
val it = [false,true,false] :
 bool list

280CS 538 Spring 2002
©

Power Sets Revisited
Let’s compute power sets in ML.
We want a function pow that takes a
list of values, viewed as a set, and
which returns a list of lists. Each
sublist will be one of the possible
subsets of the original argument.
For example,
pow [1,2] = [[1,2],[1],[2],[]]

We first define a version of cons in
curried form:
fun cons h t = h::t;
val cons = fn :
 'a -> 'a list -> 'a list

281CS 538 Spring 2002
©

Now we define pow. We define the
powerset of the empty list, [] , to be
[[]] . That is, the power set of the
empty set is set that contains only
the empty set.
For a non-empty list, consisting of
h::t , we compute the power set of t ,
which we call pset . Then the power
set for h::t is just h distributed
through pset appended to pset .
We distribute h through pset very
elegantly: we just map the function
(cons h) to pset . (cons h) adds h
to the head of any list it is given.
Thus mapping (cons h) to pset
adds h to all lists in pset .

282CS 538 Spring 2002
©

The complete definition is simply
fun pow [] = [[]]

 | pow (h::t) =

 let

 val pset = pow t

 in

 (map (cons h) pset) @ pset

 end;
val pow =
 fn : 'a list -> 'a list list

Let’s trace the computation of
pow [1,2] .
Here h = 1 and t = [2] . We need to
compute pow [2] .
Now h = 2 and t = [] .
We know pow [] = [[]] ,
so pow [2] =
(map (cons 2) [[]])@[[]] =
([[2]])@[[]] = [[2],[]]

283CS 538 Spring 2002
©

Therefore pow [1,2] =

(map (cons 1) [[2],[]])
@[[2],[]] =

[[1,2],[1]]@[[2],[]] =
[[1,2],[1],[2],[]]

284CS 538 Spring 2002
©

Composing Functions
We can define a composition function
that composes two functions into
one:
fun comp (f,g)(x) = f(g(x));
val comp = fn :
('a -> 'b) * ('c -> 'a) ->
 'c -> 'b

In curried form we have
fun comp f g x = f(g(x));
val comp = fn :
('a -> 'b) ->
('c -> 'a) -> 'c -> 'b

For example,
fun sqr x :int = x*x;

val sqr = fn : int -> int

comp sqr sqr;
val it = fn : int -> int

285CS 538 Spring 2002
©

comp sqr sqr 3;
val it = 81 : int

In SML o (lower-case O) is the infix
composition operator.
Hence
sqr o sqr ≡ comp sqr sqr

286CS 538 Spring 2002
©

Lambda Terms
ML needs a notation to write down
unnamed (anonymous) functions,
similar to the lambda expressions
Scheme uses.
That notation is
fn arg => body;

For example,
val sqr = fn x :int => x*x;
val sqr = fn : int -> int

In fact the notation used to define
functions,
fun name arg = body;

is actually just an abbreviation for the
more verbose
val name = fn arg => body;

287CS 538 Spring 2002
©

An anonymous function can be used
wherever a function value is needed.
For example,
map (fn x => [x]) [1,2,3];
val it =
[[1],[2],[3]] : int list list

We can use patterns too:
(fn [] => []
 |(h::t) => h::h::t);
val it = fn : 'a list -> 'a list

(What does this function do?)

288CS 538 Spring 2002
©

Polymorphism vs. Overloading
ML supports polymorphism.
A function may accept a polytype (a
set of types) rather than a single
fixed type.
In all cases, the same function
definition is used. Details of the
supplied type are irrelevant and may
be ignored.
For example,
fun id x = x;
val id = fn : 'a -> 'a

fun toList x = [x];
val toList = fn : 'a -> 'a list

289CS 538 Spring 2002
©

Overloading, as in C++ and Java,
allows alternative definitions of the
same method or operator, with
selection based on type.
Thus in Java + may represent integer
addition, floating point addition or
string concatenation, even though
these are really rather different
operations.
In ML +, - , * and = are overloaded.
When = is used (to test equality), ML
deduces that an equality type is
required. (Most, but not all, types can
be compared for equality).
When ML decides an equality type is
needed, it uses a type variable that
begins with two tics rather than one.
fun eq(x,y) = (x=y);
val eq = fn : ''a * ''a -> bool

290CS 538 Spring 2002
©

Defining New Types in ML
We can create new names for existing
types (type abbreviations) using
type id = def;

For example,
type triple = int*real*string;
type triple = int * real * string

type rec1=
 {a:int,b:real,c:string};
type rec1 =
 {a:int, b:real, c:string}

type 'a triple3 = 'a*'a*'a;
type 'a triple3 = 'a * 'a * 'a

type intTriple = int triple3;
type intTriple = int triple3

These type definitions are essentiality
macro-like name substitutions.

291CS 538 Spring 2002
©

The Datatype Mechanism
New types are defined using the
datatype mechanism, which
specifies new data value constructors.
For example,
datatype color =
 red|blue|green;
datatype color =
 blue | green | red

Pattern matching works on user-
defined types using their
constructors:
fun translate red = "rot"
 | translate blue = "blau"
 | translate green = "gruen";
val translate =
 fn : color -> string

292CS 538 Spring 2002
©

fun jumble red = blue
 | jumble blue = green
 | jumble green = red;
val jumble = fn : color -> color

translate (jumble green);
val it = "rot" : string

SML Examples
Source code for most of the SML
examples presented here may be
found in
~cs538-1/public/sml/class.sml

293CS 538 Spring 2002
©

Parameterized Constructors
The constructors used to define data
types may be parameterized:
datatype money =
 none
 | coin of int

 | bill of int

 | iou of real * string;
datatype money =
 bill of int | coin of int
 | iou of real * string | none

Now expressions like coin(25) or
bill(5) or iou(10.25,"Andy")
represent valid values of type money.

294CS 538 Spring 2002
©

We can also define values and
functions of type money:
val dime = coin(10);
val dime = coin 10 : money

val deadbeat =
iou(25.00,"Homer Simpson");
val deadbeat =
 iou (25.0,"Homer Simpson") :
 money

fun amount(none) = 0.0

 | amount(coin(cents)) =
 real(cents)/100.0

 | amount(bill(dollars)) =
 real(dollars)

 | amount(iou(amt,_)) =
 0.5*amt;
 val amount = fn : money -> real

295CS 538 Spring 2002
©

Polymorphic Datatypes
A user-defined data type may be
polymorphic. An excellent example is
datatype 'a option =
 none | some of 'a;
datatype 'a option =
 none | some of 'a

val zilch = none;
val zilch = none : ’a option

val mucho =some(10e10);
val mucho =
some 100000000000.0 : real option

type studentInfo =
 {name:string,
 ssNumber:int option};
type studentInfo = {name:string,
ssNumber:int option}

296CS 538 Spring 2002
©

val newStudent =
{name="Mystery Man",
 ssNumber=none} :studentInfo ;
val newStudent =
{name="Mystery Man",
 ssNumber=none} : studentInfo

297CS 538 Spring 2002
©

Datatypes may be Recursive
Recursive datatypes allow linked
structures without explicit pointers.
datatype binTree =
 null
| leaf

| node of binTree * binTree;
datatype binTree =

leaf | node of binTree * binTree
 | null

fun size(null) = 0

 | size(leaf) = 1

 | size(node(t1,t2)) =
 size(t1)+size(t2) + 1
val size = fn : binTree -> int

298CS 538 Spring 2002
©

Recursive Datatypes may be
Polymorphic

datatype 'a binTree =
 null
| leaf of 'a
| node of 'a binTree * 'a binTree

datatype 'a binTree =
 leaf of 'a |
 node of 'a binTree * 'a binTree
 | null

fun frontier(null) = []
 | frontier(leaf(v)) = [v]
 | frontier(node(t1,t2)) =
 frontier(t1) @ frontier(t2)

val frontier =
 fn : 'a binTree -> ’a list

299CS 538 Spring 2002
©

We can model n-ary trees by using
lists of subtrees:
datatype 'a Tree =
 null
| leaf of 'a
| node of 'a Tree list;
datatype 'a Tree = leaf of 'a |
node of 'a Tree list | null

fun frontier(null) = []

 | frontier(leaf(v)) = [v]

 | frontier(node(h::t)) =
 frontier(h) @

frontier(node(t))

 | frontier(node([])) = []
val frontier = fn :
 'a Tree -> 'a list

300CS 538 Spring 2002
©

Abstract Data Types
ML also provides abstract data types
in which the implementation of the
type is hidden from users.
The general form is
abstype name = implementation

with

 val and fun definitions

end;

Users may access the name of the
abstract type and the val and fun
definitions that follow the with , but
the implementation may be used
only with the body of the abstype
definition.

301CS 538 Spring 2002
©

Example
abstype 'a stack =
 stk of 'a list

with

 val Null = stk([])

 fun empty(stk([])) = true

 | empty(stk(_::_)) = false

fun top(stk(h::_)) = h
 fun pop(stk(_::t)) = stk(t)
 fun push(v,stk(L)) =
 stk(v::L)

end
type 'a stack

val Null = - : 'a stack

val empty = fn : 'a stack -> bool

val top = fn : 'a stack -> 'a

val pop =
 fn : 'a stack -> 'a stack

val push = fn :
 'a * 'a stack -> 'a stack

302CS 538 Spring 2002
©

Local value and function definitions,
not to be exported to users of the
type can be created using the local
definition mechanism described
earlier:
local

 val and fun definitions

 in

 exported definitions

 end;

303CS 538 Spring 2002
©

abstype 'a stack =
 stk of 'a list
with
 local
 fun size(stk(L))=length(L);
 in
 val Null = stk([])
 fun empty(s) =
 (size(s) = 0)

fun top(stk(h::_)) = h
 fun pop(stk(_::t)) = stk(t)
 fun push(v,stk(L)) =
 stk(v::L)
 end
end
type 'a stack
val Null = - : 'a stack
val empty = fn : 'a stack -> bool
val top = fn : 'a stack -> 'a
val pop = fn :
 'a stack -> 'a stack
val push = fn :
 'a * 'a stack -> 'a stack

304CS 538 Spring 2002
©

Why are abstract data types useful?
Because they hide an implementation
of a type from a user, allowing
implementation changes without any
impact on user programs.
Consider a simple implementation of
queues:
abstype 'a queue =
 q of 'a list

with

 val Null = q([])

fun front(q(h::_)) = h
 fun rm(q(_::t)) = q(t)
 fun enter(v,q(L)) =
 q(rev(v::rev(L)))

end
type 'a queue

val Null = - : 'a queue

val front = fn : ’a queue -> 'a

305CS 538 Spring 2002
©

val rm =
 fn : 'a queue -> 'a queue

val enter =
 fn : 'a * 'a queue -> 'a queue

This implementation of queues is
valid, but somewhat inefficient. In
particular to enter a new value onto
the rear end of a queue, we do the
following:
fun enter(v,q(L)) =
 q(rev(v::rev(L)))

 We reverse the list that implements
the queue, add the new value to the
head of the reversed queue then
reverse the list a second time.

306CS 538 Spring 2002
©

A more efficient (but less obvious)
implementation of a queue is to store
it as two lists. One list represents the
“front” of the queue. It is from this
list that we extract the front value,
and from which we remove elements.
The other list represents the “back” of
the queue (in reversed order). We add
elements to the rear of the queue by
adding elements to the front of the
list. From time to time, when the
front list becomes null, we “promote”
the rear list into the front list (by
reversing it). Now access to both the
front and the back of the queue is
fast and direct. The new
implementation is:

307CS 538 Spring 2002
©

abstype 'a queue =
 q of 'a list * 'a list

with

 val Null = q([],[])

fun front(q(h::_,_)) = h
 | front(q([],L)) =
 front(q(rev(L),[]))
 fun rm(q(_::t,L)) = q(t,L)
 | rm(q([],L)) =
 rm(q(rev(L),[]))
 fun enter(v,q(L1,L2)) =
 q(L1,v::L2)

end

type ' a queue

val Null = - : ' a queue

val front = fn :
' a queue -> ' a

val rm = fn :
' a queue -> ' a queue

val enter = fn :
' a * ' a queue -> ' a queue

308CS 538 Spring 2002
©

From the user’s point of view, the two
implementations are identical (they
export exactly the same set of values
and functions). Hence the new
implementation can replace the old
implementation without any impact
at all to the user (except, of course,
performance!).

309CS 538 Spring 2002
©

Exception Handling
Our definitions of stacks and queues
are incomplete. Reconsider our
definition of stack:
abstype 'a stack =
 stk of 'a list

with

 val Null = stk([])

 fun empty(stk([])) = true

 | empty(stk(_::_)) = false

fun top(stk(h::_)) = h
 fun pop(stk(_::t)) = stk(t)
 fun push(v,stk(L)) =
 stk(v::L)

end

What happens if we evaluate
top(Null);

We get a “match failure” because our
definition of top is incomplete!

310CS 538 Spring 2002
©

In ML we can raise an exception if an
illegal or unexpected operation
occurs. Asking for the top of an
empty stack ought to raise an
exception since the requested value
does not exist.
ML contains a number of predefined
exceptions, including
Match Empty Div Overflow

(exception names by convention
begin with a capital letter).
Predefined exception are raised by
illegal values or operations. If they
are not caught, the run-time system
prints an error message.

311CS 538 Spring 2002
©

fun f(1) = 2;
val f = fn : int -> int

f(2);
uncaught exception nonexhaustive
match failure

hd [];
uncaught exception Empty

1000000*1000000;
uncaught exception overflow

(1 div 0);
uncaught exception divide by zero

1.0/0.0;

val it = inf : real

(inf is the IEEE floating-point
standard “infinity” value)

312CS 538 Spring 2002
©

User Defined Exceptions
New exceptions may be defined as
exception name;

or
exception name of type;

For example
exception IsZero;
exception IsZero

exception NegValue of real;
exception NegValue of real

313CS 538 Spring 2002
©

Exceptions May be Raised
The raise statement raises (throws)
an exception:
raise exceptionName;

or
raise exceptionName(expr);

For example
fun divide(a,0) = raise IsZero
 | divide(a,b) = a div b;
val divide =
 fn : int * int -> int

divide(10,3);
val it = 3 : int

divide(10,0);
uncaught exception IsZero

314CS 538 Spring 2002
©

val sqrt = Real.Math.sqrt;
val sqrt = fn : real -> real

fun sqroot(x) =
 if x < 0.0
 then raise NegValue(x)
 else sqrt(x);
val sqroot = fn : real -> real

sqroot(2.0);
val it = 1.41421356237 : real

sqroot(~2.0);
uncaught exception NegValue

315CS 538 Spring 2002
©

Exception Handlers
You may catch an exception by
defining a handler for it:
(expr) handle exception1 => val1
 || exception2 => val2
 || ... ;

For example,
(sqroot ~100.0)
 handle NegValue(v) =>
 (sqrt (~v));
val it = 10.0 : real

316CS 538 Spring 2002
©

Stacks Revisited
We can add an exception, EmptyStk ,
to our earlier stack type to handle
top or pop operations on an empty
stack:
abstype 'a stack = stk of 'a list
with
 val Null = stk([])
 exception EmptyStk
 fun empty(stk([])) = true
 | empty(stk(_::_)) = false
 fun top(stk(h::_)) = h
 | top(stk([])) =
 raise EmptyStk
 fun pop(stk(_::t)) = stk(t)
 | pop(stk([])) =
 raise EmptyStk
 fun push(v,stk(L)) =
 stk(v::L)
end

317CS 538 Spring 2002
©

type 'a stack
val Null = - : 'a stack
exception EmptyStk
val empty = fn : 'a stack -> bool
val top = fn : 'a stack -> 'a
val pop = fn :
 'a stack -> 'a stack
val push = fn : 'a * 'a stack ->
'a stack

pop(Null);
uncaught exception EmptyStk
top(Null) handle EmptyStk => 0;
val it = 0 : int

318CS 538 Spring 2002
©

User-Defined Operators
SML allows users to define symbolic
operators composed of non-
alphanumeric characters. This means
operator-like symbols can be created
and used. Care must be taken to avoid
predefined operators (like +, - , ^ , @,
etc.).
If we wish, we can redo our stack
definition using symbols rather than
identifiers.
We might choose the following
symbols:
top |=

pop <==

push ==>

null <@>

empty <?>

319CS 538 Spring 2002
©

Now we can have expressions like
<?> <@>;
val it = true : bool

|= (==> (1,<@>));
val it = 1 : int

Binary functions, like ==> (push) are
much more readable if they are infix.
That is, we’d like to be able to write
1 ==> 2+3 ==> <@>

which pushes 2+3 , then 1 onto an
empty stack.
To make a function (either identifier
or symbolic) infix rather than prefix
we use the definition
infix level name

or
infixr level name

320CS 538 Spring 2002
©

level is an integer representing the
“precedence” level of the infix
operator. 0 is the lowest precedence
level; higher precedence operators are
applied before lower precedence
operators (in the absence of explicit
parentheses).
infix defines a left-associative
operator (groups from left to right).
infixr defines a right-associative
operator (groups from right to left).
Thus
fun cat(L1,L2) = L1 @ L2;

infix 5 cat

makes cat a left associative infix
operator at the same precedence level
as @. We can now write
[1,2] cat [3,4,5] cat [6,7];
val it = [1,2,3,4,5,6,7] : int list

321CS 538 Spring 2002
©

The standard predefined operators
have the following precedence levels:
Level Operator
3 o

4 = <> < > <= >=

5 :: @

6 + - ^

7 * / div mod

If we define ==> (push) as
infixr 2 ==>

then
1 ==> 2+3 ==> <@>

will work as expected, evaluating
expressions like 2+3 before doing any
pushes, with pushes done right to
left.

322CS 538 Spring 2002
©

abstype 'a stack =
 stk of 'a list

with

 val <@> = stk([])

 exception emptyStk

 fun <?>(stk([])) = true

 | <?>(stk(_::_)) = false

 fun |=(stk(h::_)) = h

 | |=(stk([])) =
 raise emptyStk

 fun <==(stk(_::t)) = stk(t)

 | <==(stk([])) =
 raise emptyStk

 fun ==>(v,stk(L)) =
 stk(v::L)

 infixr 2 ==>

end

323CS 538 Spring 2002
©

type 'a stack

val <@> = - : 'a stack

exception emptyStk

val <?> = fn : 'a stack -> bool

val |= = fn : 'a stack -> 'a

val <== = fn :
 'a stack -> 'a stack

val ==> = fn : ’a * 'a stack ->
'a stack

infixr 2 ==>

Now we can write
val myStack =
 1 ==> 2+3 ==> <@>;
val myStack = - : int stack

|= myStack;
val it = 1 : int

|= (<== myStack);
val it = 5 : int

324CS 538 Spring 2002
©

Using Infix Operators as
Values

Sometimes we simply want to use an
infix operator as a symbol whose
value is a function.
For example, given
fun dupl f v = f(v,v);
val dupl =

fn : ('a * 'a -> 'b) -> 'a -> 'b

we might try the call
dupl ^ "abc";

This fails because SML tries to parse
dupl and "abc" as the operands of ^ .
To pass an operator as an ordinary
function value, we prefix it with op
which tells the SML compiler that the
following symbol is an infix operator.

325CS 538 Spring 2002
©

Thus
dupl op ^ "abc";
val it = "abcabc" : string

works fine.

326CS 538 Spring 2002
©

The Case Expression
ML contains a case expression
patterned on switch and case
statements found in other languages.
As in function definitions, patterns
are used to choose among a variety of
values.
The general form of the case is
case expr of

 pattern 1 => expr 1|

 pattern n => expr 2|

 ...

 pattern n => expr n;

If no pattern matches, a Match
exception is thrown.
It is common to use _ (the wildcard)
as the last pattern in a case .

327CS 538 Spring 2002
©

Examples include
case c of

 red => "rot" |

 blue => "blau" |

 green => "gruen";

case pair of

 (1,_) => "win" |

 (2,_) => "place" |

 (3,_) => "show" |

 (_,_) => "loser";

case intOption of

 none => 0 |

 some(v) => v;

328CS 538 Spring 2002
©

Imperative Features of ML
ML provides references to heap
locations that may be updated. This is
essentially the same as access to heap
objects via references (Java) or
pointers (C and C++).
The expression
ref val

creates a reference to a heap location
initialized to val. For example,
 ref 0;
 val it = ref 0 : int ref

The prefix operator ! fetches the value
contained in a heap location (just as *
dereferences a pointer in C or C++).
Thus
 ! (ref 0);
 val it = 0 : int

329CS 538 Spring 2002
©

The expression
ref := val

updates the heap location referenced
by ref to contain val . The unit value,
() , is returned.
Hence
val x = ref 0;
val x = ref 0 : int ref

!x;
val it = 0 : int

x:=1;
val it = () : unit

!x;
val it = 1 : int

330CS 538 Spring 2002
©

Sequential Composition
Expressions or statements are
sequenced using “; ”. Hence
val a = (1+2;3+4);
val a = 7 : int

(x:=1;!x);
val it = 1 : int

Iteration
while expr1 do expr2

implements iteration (and returns
unit); Thus
(while false do 10);
val it = () : unit

while !x > 0 do x:= !x-1;
val it = () : unit

!x;
val it = 0 : int

331CS 538 Spring 2002
©

Simple I/O
The function
 print;

 val it = fn : string -> unit

prints a string onto standard output.
For example,
print("Hello World\n");

 Hello World

The conversion routines
 Real.toString;
 val it = fn : real -> string

 Int.toString;
 val it = fn : int -> string

 Bool.toString;
 val it = fn : bool -> string

convert a value (real , int or bool)
into a string . Unlike Java, the call
must be explicit.

332CS 538 Spring 2002
©

For example,
print(Int.toString(123));
123

Also available are
Real.fromString;
val it = fn : string -> real
option

Int.fromString;
val it = fn : string -> int
option

Bool.fromString;
val it = fn : string -> bool
option

which convert from a string to a
real or int or bool if possible.
(That’s why the option type is used).

333CS 538 Spring 2002
©

For example,
case (Int.fromString("123"))
 of

 SOME(i) => i | NONE => 0;
val it = 123 : int

case (Int.fromString(
 "One two three")) of

 SOME(i) => i | NONE => 0;
val it = 0 : int

334CS 538 Spring 2002
©

Text I/O
The structure TextIO contains a wide
variety of I/O types, values and
functions. You load these by entering:
open TextIO;

Among the values loaded are
• type instream

This is the type that represents input
text files.

• type outstream
This is the type that represents
output text files.

• type vector = string
Makes vector a synonym for
string.

• type elem = char
Makes elem a synonym for char .

335CS 538 Spring 2002
©

• val stdIn : instream
val stdOut : outstream
val stdErr : outstream
Predefined input and output streams.

• val openIn :
 string -> instream
val openOut :
 string -> outstream
Open an input or output stream.
For example,
val out =
 openOut("/tmp/test1");
val out = - : outstream

• val input :
 instream -> vector
Read a line of input into a string
(vector is defined as equivalent to
string). For example (user input is
in red):

336CS 538 Spring 2002
©

val s = input(stdIn);
Hello!

 val s = "Hello!\n" : vector

• val inputN :
 instream * int -> vector
Read the next N input characters into
a string . For example,
val t = inputN(stdIn,3);
abcde

val t = "abc" : vector

• val inputAll :
 instream -> vector
Read the rest of the input file into a
string (with newlines separating
lines). For example,
val u = inputAll(stdIn);

 Four score and
 seven years ago ...
 val u = "Four score and\nseven
 years ago ...\n" : vector

337CS 538 Spring 2002
©

• val endOfStream :
 instream -> bool
Are we at the end of this input
stream?

• val output :
 outstream * vector -> unit
Output a string on the specified
output stream. For example,
output(stdOut,
 "That’s all folks!\n");
That’s all folks!

338CS 538 Spring 2002
©

String Operations
ML provides a wide variety of string
manipulation routines. Included are:
• The string concatenation operator, ^

"abc" ^ "def" = "abcdef"

• The standard 6 relational operators:
 < > <= >= = <>

• The string size operator:
val size : string -> int
size ("abcd");
val it = 4 : int

• The string subscripting operator
(indexing from 0):
val sub =
 fn : string * int -> char
sub("abcde",2);
val it = #"c" : char

339CS 538 Spring 2002
©

• The substring function
val substring :
string * int * int -> string
This function is called as
substring(string,start,len)
start is the starting position,
counting from 0.
len is the length of the desired
substring. For example,
substring("abcdefghij",3,4)
val it = "defg" : string

• Concatenation of a list of strings into
a single string:
concat :
 string list -> string
For example,
concat ["What’s"," up","?"];
val it = "What’s up?" : string

340CS 538 Spring 2002
©

• Convert a character into a string:
str : char -> string
For example,
 str(#"x");

val it = "x" : string

• “Explode” a string into a list of
characters:
explode : string -> char list
For example,
explode("abcde");
val it =
[#"a",#"b",#"c",#"d",#"e"] :
char list

• “Implode” a list of characters into a
string.
implode : char list -> string
For example,
implode
[#"a",#"b",#"c",#"d",#"e"];
val it = "abcde" : string

341CS 538 Spring 2002
©

Structures and Signatures
In C++ and Java you can group
variable and function definitions into
classes. In Java you can also group
classes into packages.
In ML you can group value, exception
and function definitions into
structures.
You can then import selected
definitions from the structure (using
the notation structure.name) or
you can open the structure, thereby
importing all the definitions within
the structure.
(Examples used in this section may be
found at
~cs538-1/public/sml/struct.sml)

342CS 538 Spring 2002
©

The general form of a structure
definition is
structure name =
struct

 val, exception and
 fun definitions

end

For example,
structure Mapping =
struct
 exception NotFound;
 val create = [];
 fun lookup(key,[]) =
 raise NotFound
 | lookup(key,
 (key1,value1)::rest) =
 if key = key1
 then value1
 else lookup(key,rest);

343CS 538 Spring 2002
©

 fun insert(key,value,[]) =
 [(key,value)]
 | insert(key,value,
 (key1,value1)::rest) =
 if key = key1
 then (key,value)::rest
 else (key1,value1)::
 insert(key,value,rest);
end;

We can access members of this
structure as Mapping.name . Thus
Mapping.insert(538,"languages",[]);

val it = [(538,"languages")] :
(int * string) list

open Mapping;
exception NotFound

val create : 'a list

val insert : ''a * 'b * (''a * 'b)
 list -> (''a * 'b) list

val lookup : ''a * (''a * 'b)
list -> 'b

344CS 538 Spring 2002
©

Signatures
Each structure has a signature, which
is it type.
For example, Mapping ’s signature is
structure Mapping :

 sig

 exception NotFound

 val create : 'a list

 val insert : ''a * 'b *
 (''a * 'b) list ->
 (''a * 'b) list

 val lookup : ''a *
 (''a * 'b) list -> 'b

 end

345CS 538 Spring 2002
©

You can define a signature as
signature name = sig

 type definitions for values,
 functions and exceptions

end

For example,
signature Str2IntMapping =
sig
 exception NotFound;
 val lookup:

string * (string*int) list
 -> int;

end;

346CS 538 Spring 2002
©

Signatures can be used to
• Restrict the type of a value or

function in a structure.

• Hide selected definitions that appear
in a structure

For example
structure Str2IntMap :

Str2IntMapping = Mapping;

defines a new structure, Str2IntMap ,
created by restricting Mapping to the
Str2IntMapping signature. When
we do this we get
open Str2IntMap;
 exception NotFound

 val lookup : string *
 (string * int) list -> int

Only lookup and NotFound are
created, and lookup is limited to keys
that are strings.

347CS 538 Spring 2002
©

Extending ML’s Polymorphism
In languages like C++ and Java we
must use types like void* or Object
to simulate the polymorphism that
ML provides. In ML whenever possible
a general type (a polytype) is used
rather than a fixed type. Thus in
fun len([]) = 0

 | len(a::b) = 1 + len(b);

we get a type of
 'a list -> int

because this is the most general type
possible that is consistent with len ’s
definition.
Is this form of polymorphism general
enough to capture the general idea of
making program definitions as type-
independent as possible?

348CS 538 Spring 2002
©

It isn’t, and to see why consider the
following ML definition of a merge
sort. A merge sort operates by first
splitting a list into two equal length
sublists. The following function does
this:
fun split [] = ([],[])
 | split [a] = ([a],[])
 | split (a::b::rest) =
 let val (left,right) =
 split(rest) in
 (a::left, b::right)
 end;

After the input list is split into two
halves, each half is recursively sorted,
then the sorted halves are merged
together into a single list.
The following ML function merges
two sorted lists into one:

349CS 538 Spring 2002
©

fun merge([],[]) = []
 | merge([],hd::tl) = hd::tl
 | merge(hd::tl,[]) = hd::tl
 | merge(hd::tl,h::t) =
 if hd <= h
 then hd::merge(tl,h::t)
 else h::merge(hd::tl,t)

With these two subroutines, a
definition of a sort is easy:
fun sort [] = []
 | sort([a]) = [a]
 | sort(a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(sort(left),

sort(right))
 end;

350CS 538 Spring 2002
©

This definition looks very general—it
should work for a list of any type.
Unfortunately, when ML types the
functions we get a surprise:
val split = fn : 'a list ->
 'a list * 'a list
val merge = fn : int list *
 int list -> int list
val sort = fn :
 int list -> int list

split is polymorphic, but merge and
sort are limited to integer lists!
Where did this restriction come from?

351CS 538 Spring 2002
©

The problem is that we did a
comparison in merge using the <=
operator, and ML typed this as an
integer comparison.
We can make our definition of sort
more general by adding a comparison
function, le(a,b) as a parameter to
merge and sort . If we curry this
parameter we may be able to hide it
from end users. Our updated
definitions are:
fun merge(le,[],[]) = []
 | merge(le,[],hd::tl) = hd::tl
 | merge(le,hd::tl,[]) = hd::tl
 | merge(le,hd::tl,h::t) =
 if le(hd,h)
 then hd::merge(le,tl,h::t)
 else h::merge(le,hd::tl,t)

352CS 538 Spring 2002
©

fun sort le [] = []
 | sort le [a] = [a]
 | sort le (a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(le, sort le left,

sort le right)
 end;

Now the types of merge and sort
are:
val merge = fn :
 ('a * 'a -> bool) *
 'a list * 'a list -> 'a list
val sort = fn : ('a * 'a -> bool)
 -> 'a list -> 'a list

We can now “customize” sort by
choosing a particular definition for
the le parameter:
fun le(a,b) = a <= b;
val le = fn : int * int -> bool

353CS 538 Spring 2002
©

fun intsort L = sort le L;
val intsort =
 fn : int list -> int list
intsort(
 [4,9,0,2,111,~22,8,~123]);
val it = [~123,~22,0,2,4,8,9,111]
: int list

fun strle(a:string,b) =
 a <= b;
val strle =
 fn : string * string -> bool

fun strsort L = sort strle L;
val strsort =

fn : string list -> string list
strsort(
 ["aac","aaa","ABC","123"]);
val it =
["123","ABC","aaa","aac"] :
string list

354CS 538 Spring 2002
©

Making the comparison relation an
explicit parameter works, but it is a
bit ugly and inefficient. Moreover, if
we have several functions that
depend on the comparison relation,
we need to ensure that they all use
the same relation. Thus if we wish to
define a predicate inOrder that tests
if a list is already sorted, we can use:
fun inOrder le [] = true
 | inOrder le [a] = true
 | inOrder le (a::b::rest) =
 le(a,b) andalso
 inOrder le (b::rest);
val inOrder = fn :
 ('a * 'a -> bool) -> 'a list ->
 bool

Now sort and inOrder need to use
the same definition of le . But how
can we enforce this?

355CS 538 Spring 2002
©

The structure mechanism we studied
earlier can help. We can put a single
definition of le in the structure, and
share it:
structure Sorting =
struct
 fun le(a,b) = a <= b;

 fun split [] = ([],[])
 | split [a] = ([a],[])
 | split (a::b::rest) =
 let val (left,right) =
 split rest in

(a::left,b::right)
 end;
 fun merge([],[]) = []
 | merge([],hd::tl) = hd::tl
 | merge(hd::tl,[]) = hd::tl
 | merge(hd::tl,h::t) =
 if le(hd,h)
 then hd::merge(tl,h::t)
 else h::merge(hd::tl,t)

356CS 538 Spring 2002
©

 fun sort [] = []
 | sort([a]) = [a]
 | sort(a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(sort(left),
 sort(right))
 end;

 fun inOrder [] = true
 | inOrder [a] = true
 | inOrder (a::b::rest) =
 le(a,b) andalso
 inOrder (b::rest);
end;

structure Sorting :
 sig

val inOrder : int list -> bool

 val le : int * int -> bool

 val merge : int list *
 int list -> int list

 val sort :
 int list -> int list

357CS 538 Spring 2002
©

 val split : 'a list ->
 'a list * 'a list

 end

To sort a type other than integers, we
replace the definition of le in the
structure.
But rather than actually edit that
definition, ML gives us a powerful
mechanism to parameterize a
structure. This is the functor, which
allows us to use one or more
structures as parameters in the
definition of a structure.

358CS 538 Spring 2002
©

Functors
The general form of a functor is
functor name
 (structName:signature) =
 structure definition;

This functor will create a specific
version of the structure definition
using the structure parameter passed
to it.
For our purposes this is ideal—we pass
in a structure defining an ordering
relation (the le function). This then
creates a custom version of all the
functions defined in the structure
body, using the specific le definition
provided.

359CS 538 Spring 2002
©

We first define
signature Order =

sig

 type elem

 val le : elem*elem -> bool

end;

This defines the type of a structure
that defines a le predicate defined on
a pair of types called elem .
An example of such a structure is
structure IntOrder:Order =

struct

 type elem = int;

 fun le(a,b) = a <= b;

end;

Now we just define a functor that
creates a Sorting structure based on
an Order structure:

360CS 538 Spring 2002
©

functor MakeSorting(O:Order) =
struct

open O; (* makes le available*)
 fun split [] = ([],[])
 | split [a] = ([a],[])
 | split (a::b::rest) =
 let val (left,right) =
 split rest in
 (a::left,b::right)
 end;

 fun merge([],[]) = []
 | merge([],hd::tl) = hd::tl
 | merge(hd::tl,[]) = hd::tl
 | merge(hd::tl,h::t) =
 if le(hd,h)
 then hd::merge(tl,h::t)
 else h::merge(hd::tl,t)

361CS 538 Spring 2002
©

 fun sort [] = []
 | sort([a]) = [a]
 | sort(a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(sort(left),

sort(right))
 end;

 fun inOrder [] = true
 | inOrder [a] = true
 | inOrder (a::b::rest) =
 le(a,b) andalso
 inOrder (b::rest);
end;

362CS 538 Spring 2002
©

Now
structure IntSorting =
 MakeSorting(IntOrder);

creates a custom structure for sorting
integers:
 IntSorting.sort [3,0,~22,8];

val it = [~22,0,3,8] : elem list

To sort strings, we just define a
structure containing an le defined
for strings with Order as its
signature (i.e., type) and pass it to
MakeSorting :
structure StrOrder:Order =

struct

 type elem = string

 fun le(a:string,b) = a <= b;

end;

363CS 538 Spring 2002
©

structure StrSorting =
 MakeSorting(StrOrder);

StrSorting.sort(
 ["cc","abc","xyz"]);
val it = ["abc","cc","xyz"] :
 StrOrder.elem list

StrSorting.inOrder(
 ["cc","abc","xyz"]);
val it = false : bool

StrSorting.inOrder(
 [3,0,~22,8]);
stdIn:593.1-593.32 Error:
operator and operand don’t agree
[literal]

operator domain: strOrder.elem
list
 operand: int list
 in expression:

StrSorting.inOrder (3 :: 0 ::
~22 :: <exp> :: <exp>)

364CS 538 Spring 2002
©

The SML Basis Library
SML provides a wide variety of useful
types and functions, grouped into
structures, that are included in the
Basis Library.
A web page fully documenting the
Basis Library is linked from the ML
page that is part of the Programming
Languages Links page on the CS 538
home page.
Many useful types, operators and
functions are “preloaded” when you
start the SML compiler. These are
listed in the “Top-level Environment”
section of the Basis Library
documentation.
Many other useful definitions must
be explicitly fetched from the
structures they are defined in.

365CS 538 Spring 2002
©

For example, the Math structure
contains a number of useful
mathematical values and operations.
You may simply enter
open Math;

while will load all the definitions in
Math . Doing this may load more
definitions than you want. What’s
worse, a definition loaded may
redefine a definition you currently
want to stay active. (Recall that ML
has virtually no overloading, so
functions with the same name in
different structures are common.)
A more selective way to access a
definition is to qualify it with the
structure’s name. Hence
Math.pi;
val it = 3.14159265359 : real

366CS 538 Spring 2002
©

gets the value of pi defined in Math .
Should you tire of repeatedly
qualifying a name, you can (of
course) define a local value to hold its
value. Thus
val pi = Math.pi;

val pi = 3.14159265359 : real

works fine.

367CS 538 Spring 2002
©

An Overview of Structures in
the Basis Library

The Basis Library contains a wide
variety of useful structures. Here is an
overview of some of the most
important ones.
• Option

Operations for the option type.
• Bool

Operations for the bool type.
• Char

Operations for the char type.
• String

Operations for the string type.
• Byte

Operations for the byte type.
• Int

Operations for the int type.

368CS 538 Spring 2002
©

• IntInf

Operations for an unbounded precision
integer type.

• Real

Operations for the real type.
• Math

Various mathematical values and
operations.

• List

Operations for the list type.
• ListPair

Operations on pairs of lists.
• Vector

A polymorphic type for immutable
(unchangeable) sequences.

• IntVector, RealVector,
BoolVector, CharVector

Monomorphic types for immutable
sequences.

369CS 538 Spring 2002
©

• Array

A polymorphic type for mutable
(changeable) sequences.

• IntArray, RealArray,
BoolArray, CharArray

Monomorphic types for mutable
sequences.

• Array2

A polymorphic 2 dimensional mutable
type.

• IntArray2, RealArray2,
BoolArray2, CharArray2

Monomorphic 2 dimensional mutable
types.

• TextIO

Character-oriented text IO.
• BinIO

Binary IO operations.
• OS, Unix, Date, Time, Timer

Operating systems types and operations.

370CS 538 Spring 2002
©

ML Type Inference
One of the most novel aspects of ML is
the fact that it infers types for all user
declarations.
How does this type inference mechanism
work?
Essentially, the ML compiler creates an
unknown type for each declaration the
user makes. It then solves for these
unknowns using known types and a set
of type inference rules. That is, for a
user-defined identifier i , ML wants to
determine T(i) , the type of i .

371CS 538 Spring 2002
©

The type inference rules are:
1. The types of all predefined literals,

constants and functions are known in
advance. They may be looked-up and
used. For example,

2 : int

true : bool

[] : 'a list

:: : 'a * 'a list -> 'a list

2. All occurrences of the same symbol
(using scoping rules) have the same
type.

3. In the expression
I = J

 we know T(I) = T(J) .

372CS 538 Spring 2002
©

4. In a conditional
(if E1 then E2 else E3)

 we know that
T(E1) = bool ,
T(E2) = T(E3) = T(conditional)

5. In a function call
(f x)

 we know that if T(f) = 'a -> 'b
 then T(x) = 'a and T(f x) = 'b

6. In a function definition
fun f x = expr;

 if t(x) = 'a and T(expr) = 'b
 then T(f) = 'a -> 'b

7. In a tuple (e 1,e 2, ..., e n)

if we know that T(e i) = 'a i 1 ≤ i ≤ n

 then T(e 1,e 2, ..., e n) =
 'a 1*'a 2*...*'a n

373CS 538 Spring 2002
©

8. In a record
 { a=e 1,b=e 2, ... }

 if T(e i) = 'a i 1 ≤ i ≤ n then
 the type of the record =

{a:'a 1, b:'a 2, ...}

9. In a list [v 1,v 2, ... v n]

if we know that T(v i) = 'a i 1 ≤ i ≤ n

 then we know that
'a 1='a 2=...='a n and
T([v 1,v 2, ... v n]) = 'a 1 list

374CS 538 Spring 2002
©

To Solve for Types:
1. Assign each untyped symbol its own

distinct type variable.
2. Use rules (1) to (9) to solve for and

simplify unknown types.
3. Verify that each solution “works”

(causes no type errors) throughout the
program.

Examples
Consider
fun fact(n)=

if n=1 then 1 else n*fact(n-1);

To begin, we’ll assign type variables:
T(fact) = 'a -> 'b
(fact is a function)
T(n) = 'c

375CS 538 Spring 2002
©

Now we begin to solve for the types
'a , 'b and 'c must represent.
We know (rule 5) that 'c = 'a since
n is the argument of fact .
We know (rule 3) that 'c = T(1) =
int since n=1 is part of the definition.
We know (rule 4) that T(1) = T(if
expression) ='b since the if
expression is the body of fact .
Thus, we have
‘a = 'b ='c = int , so
T(fact) = int -> int

T(n) = int

These types are correct for all
occurrences of fact and n in the
definition.

376CS 538 Spring 2002
©

A Polymorphic Function:
fun leng(L) =

 if L = []

 then 0

 else 1+len(tl L);

To begin, we know that
T([]) = 'a list and
T(tl) = 'b list -> 'b list

We assign types to leng and L:
T(leng) = 'c -> 'd

T(L) = 'e

Since L is the argument of leng ,
'e = 'c

From the expression L=[] we know
'e = 'a list

377CS 538 Spring 2002
©

From the fact that 0 is the result of
the then, we know the if returns an
int , so 'd = int .
Thus T(leng) = 'a list -> int and
T(L) = 'a list

These solutions are type correct
throughout the definition.

378CS 538 Spring 2002
©

Type Inference for Patterns
Type inference works for patterns too.
Consider
fun leng [] = 0

 | leng (a::b) = 1 + leng b;

We first create type variables:
T(leng) = 'a -> 'b

T(a) = 'c

T(b) = 'd

From leng [] we conclude that
'a = 'e list

From leng [] = 0 we conclude that
'b = int

From leng (a::b) we conclude that
'c ='e and 'd = 'e list

Thus we have
T(leng) = 'e list -> int

379CS 538 Spring 2002
©

T(a) = 'e

T(b) = 'e list

This solution is type correct
throughout the definition.

380CS 538 Spring 2002
©

Not Everything can be
Automatically Typed in ML

Let’s try to type
fun f x = (x x);

We assume
T(f) = 'a -> 'b

t(x) = 'c

Now (as usual) 'a = 'c since x is the
argument of f .
From the call (x x) we conclude that
'c must be of the form 'd -> 'e
(since x is being used as a function).
Moreover, 'c = 'd since x is an
argument in (x x) .
Thus 'c = 'd ->'e = 'c ->'e .
But 'c = 'c->'e has no solution, so
in ML this definition is invalid. We

381CS 538 Spring 2002
©

can’t pass a function to itself as an
argument—the type system doesn’t
allow it.
In Scheme this is allowed:
(define (f x) (x x))

but a call like
(f f)

certainly doesn’t do anything good!

382CS 538 Spring 2002
©

Type Unions
Let’s try to type
fun f g = ((g 3), (g true));

Now the type of g is 'a -> 'b since g
is used as a function.
The call (g 3) says 'a = int and the
call (g true) says 'a = boolean .
Does this mean g is polymorphic?
That is, is the type of f

f : ('a->'b)->'b*'b ?
NO!
All functions have the type 'a -> 'b
but not all functions can be passed to
f .
Consider not: bool->bool .
The call (not 3) is certainly illegal.

383CS 538 Spring 2002
©

What we’d like in this case is a union
type. That is, we’d like to be able to
type g as (int|bool)->'b which ML
doesn’t allow.
Fortunately, ML does allow type
constructors, which are just what we
need.
Given
datatype T =
 I of int|B of bool;

we can redefine f as
fun f g =
 (g (I(3)), g (B(true)));
val f = fn : (T -> 'a) -> 'a * 'a

384CS 538 Spring 2002
©

Finally, note that in a definition like
let
 val f =

fn x => x (* id function*)
in (f 3,f true)
end;

type inference works fine:
val it = (3,true) : int * bool

Here we define f in advance, so its
type is known when calls to it are
seen.

385CS 538 Spring 2002
©

Reading Assignment
• Sethi: Chapter 11

• Scott: Section 11.3

386CS 538 Spring 2002
©

Prolog
Prolog presents a view of
programming that is very different
from most other programming
languages.
A famous text book is entitled
“Algorithms + Data Structures =
Programs”
This formula represents well the
conventional approach to
programming that most programming
languages support.
In Prolog there is an alternative rule
of programming:
“Algorithms = Logic + Control”
This rule encompasses a non-
procedural view of programming.

387CS 538 Spring 2002
©

Logic (what the program is to
compute) comes first.
Then control (how to implement the
logic) is considered.
In Prolog we program the logic of a
program, but the Prolog system
automatically implements the control.
Logic is essential—control is just
efficiency.

388CS 538 Spring 2002
©

Logic Programming
Prolog implements logic programming.

In fact Prolog means Programming
in Logic.
In Prolog programs are statements of
rules and facts.
Program execution is deduction—can
an answer be inferred from known
rules and facts.
Prolog was developed in 1972 by
Kowalski and Colmerauer at the
University of Marseilles.

389CS 538 Spring 2002
©

Elementary Data Objects
• In Prolog integers and atoms are the

elementary data objects.

• Integers are ordinary integer literals and
values.

• Atoms are identifiers that begin with a
lower-case letter (much like symbolic
values in Scheme).

• In Prolog data objects are called terms.

• In Prolog we define relations among
terms (integers, atoms or other terms).

• A predicate names a relation.
Predicates begin with lower-case letters.

• To define a predicate, we write clauses
that define the relation.

390CS 538 Spring 2002
©

• There are two kinds of program clauses,
facts and rules.

• A fact is a predicate that prefixes a
sequence of terms, and which ends with
a period (“.”).

As an example, consider the following
facts which define “fatherOf ” and
“motherOf ” relations.

fatherOf(tom,dick).

fatherOf(dick,harry).

fatherOf(jane,harry).

motherOf(tom,judy).

motherOf(dick,mary).

motherOf(jane,mary).

The symbols fatherOf and motherOf
are predicates. The symbols tom ,
dick , harry , judy , mary and jane
are atoms.

391CS 538 Spring 2002
©

Once we have entered rules and facts
that define relations, we can make
queries (ask the Prolog system
questions).
Prolog has two interactive modes that
you can switch between.
To enter definition mode (to define
rules and facts) you enter
[user].

You then enter facts and rules,
terminating this phase with ^D (end
of file).
Alternatively, you can enter
['filename'].

to read in rules and facts stored in
the file named filename .

392CS 538 Spring 2002
©

When you start Prolog, or after you
leave definitions mode, you are in
query mode.
In query mode you see a prompt of
the form
| ?- or ?- (depending on the system
you are running).
In query mode, Prolog allows you to
ask whether a relation among terms is
true or false.
Thus given our definition of
motherOf and fatherOf relations,
we can ask:
| ?- fatherOf(tom,dick).
yes

A “yes” response means that Prolog is
able to conclude from the facts and
rules it has been given that the
relation queried does hold.

393CS 538 Spring 2002
©

| ?- fatherOf(georgeW,george).
no

A “no” response to a query means
that Prolog is unable to conclude that
the relation holds from what it has
been told. The relation may actually
be true, but Prolog may lack necessary
facts or rules to deduce this.

394CS 538 Spring 2002
©

Variables in Queries
One of the attractive features of
Prolog is the fact that variables may
be included in queries. A variable
always begins with a capital letter.
When a variable is seen, Prolog tries
to find a value (binding) for the
variable that will make the queried
relation true.
For example,
fatherOf(X,harry).

asks Prolog to find an value for X
such that X’s father is harry .
When we enter the query, Prolog
gives us a solution (if one can be
found):
 ?- fatherOf(X,harry).

 X = dick

395CS 538 Spring 2002
©

If no solution can be found, it tells us
so:
| ?- fatherOf(Y,jane).
no

Since solutions to queries need not be
unique, Prolog will give us alternate
solutions if we ask for them. We do
so by entering a “;” after a solution is
printed. We get a “no” when no more
solutions can be found:
| ?- fatherOf(X,harry).

X = dick ;
X = jane ;
no

396CS 538 Spring 2002
©

Variables may be placed anywhere in
a query. Thus we may ask
| ?- fatherOf(jane,X).

X = harry ;
no

We may use more than one variable if
we wish:
| ?- fatherOf(X,Y).
X = tom,

Y = dick ;
X = dick,

Y = harry ;
X = jane,

Y = harry ;

no
(This query displays all the fatherOf
relations).

397CS 538 Spring 2002
©

Conjunction of Goals
More than one relation can be
included as the “goal” of a query. A
comma (“,”) is used as an AND
operator to indicate a conjunction of
goals—all must be satisfied by a
solution to the query.
| ?-
fatherOf(jane,X),motherOf(jane,Y).

X = harry,

Y = mary ;
no

A given variable may appear more
than once in a query. The same value
of the variable must be used in all
places in which the variable appears
(this is called unification).

398CS 538 Spring 2002
©

For example,
| ?-
fatherOf(tom,X),fatherOf(X,harry).

X = dick ;
no

399CS 538 Spring 2002
©

Rules in Prolog
Rules allow us to state that a relation
will hold depending on the truth
(correctness) of other relations.
In effect a rules says,
“If I know that certain relations hold,
then I also know that this relation
holds.”
A rule in Prolog is of the form
rel 1 :- rel 2, rel 3, ... rel n.

This says rel 1 can be assumed true if
we can establish that rel 2 and rel 3

and all relations to rel n are true.
rel 1 is called the head of the rule.
rel 2 to rel n form the body of the
rule.

400CS 538 Spring 2002
©

Example
The following two rules define a
grandMotherOf relation using the
motherOf and fatherOf relations:
grandMotherOf(X,GM) :-

 motherOf(X,M),
 motherOf(M,GM).

grandMotherOf(X,GM) :-

 fatherOf(X,F),
 motherOf(F,GM).

| ?- grandMotherOf(tom,GM).

GM = mary ;
no

| ?- grandMotherOf(dick,GM).
no

| ?- grandMotherOf(X,mary).

X = tom ;
no

401CS 538 Spring 2002
©

As is the case for all programming, in
all languages, you must be careful
when you define a rule that it
correctly captures the idea you have
in mind.
Consider the following rule that
defines a sibling relation between
two people:
sibling(X,Y) :-
motherOf(X,M), motherOf(Y,M),

fatherOf(X,F), fatherOf(Y,F).

This rule says that X and Y are siblings
if each has the same mother and the
same father.
But the rule is wrong!
Why?

402CS 538 Spring 2002
©

Let’s give it a try:
| ?- sibling(X,Y).

X = Y = tom

Darn! That’s right, you can’t be your
own sibling. So we refine the rule to
force X and Y to be distinct:
sibling(X,Y) :-
 motherOf(X,M), motherOf(Y,M),
 fatherOf(X,F), fatherOf(Y,F),
 \+(X=Y).

In Quintus prolog “\+ ” represents
not; most other Prologs include a not
relation.

| ?- sibling(X,Y).
X = dick,

Y = jane ;
X = jane,

Y = dick ;
no

403CS 538 Spring 2002
©

Note that distinct but equivalent
solutions
 (like X = dick,Y = jane vs.
X = jane,Y = dick) often appear in
Prolog solutions. You may sometimes
need to “filter out” solutions that are
effectively redundant (perhaps by
formulating stricter or more precise
rules).

404CS 538 Spring 2002
©

How Prolog Solves Queries
The unique feature of Prolog is that it
automatically chooses the facts and
rules needed to solve a query.
But how does it make its choice?
It starts by trying to solve each goal
in a query, left to right (recall goals
are connected using “,” which is the
and operator).
For each goal it tries to match a
corresponding fact or the head of a
corresponding rule.

405CS 538 Spring 2002
©

A fact or head of rule matches a goal
if:
• Both use the same predicate.

• Both have the same number of terms
following the predicate.

• Each term in the goal and fact or rule
head match (are equal), possibly
binding a free variable to force a
match.

For example, assume we wish to
match the following goal:
x(a,B)

This can match the fact
x(a,b).

or the head of the rule
x(Y,Z) :- Y = Z.

406CS 538 Spring 2002
©

But x(a,B) can’t match
y(a,b) (wrong predicate name) or
x(b,d) (first terms don’t match) or
x(a,b,c) (wrong number of terms).
If we succeed in matching a rule, we
have solved the goal in question; we
can go on to match any remaining
goals.
If we match the head of a rule, we
aren’t done—we add the body of the
rule to the list of goals that must be
solved.
Thus if we match the goal x(a,B)

with the rule
x(Y,Z) :- Y = Z.

then we must solve a=B which is done
by making B equal to a.

407CS 538 Spring 2002
©

Backtracking
If we reach a point where a goal can’t
be matched, or the body of a rule
can’t be matched, we backtrack to the
last (most recent) spot where a choice
of matching a particular fact or rule
was made. We then try to match a
different fact or rule. If this can’t be
done, we go back to the next previous
place where a choice was made and
try a different match there. We try
alternatives until we are able to solve
all the goals in our query or until all
possible choices have been tried and
found to fail. If this happens, we
answer “no” the query can’t be
solved.
As we try to match facts and rules we
try them in their order of definition.

408CS 538 Spring 2002
©

Example
Let’s trace how
| ?- grandMotherOf(tom,GM).

is solved.
Recall that
grandMotherOf(X,GM) :-

 motherOf(X,M),
 motherOf(M,GM).

grandMotherOf(X,GM) :-

 fatherOf(X,F),
 motherOf(F,GM).

fatherOf(tom,dick).

fatherOf(dick,harry).

fatherOf(jane,harry).

motherOf(tom,judy).

motherOf(dick,mary).

motherOf(jane,mary).

409CS 538 Spring 2002
©

We try the first grandMotherOf rule
first.
This forces X = tom . We have to solve
 motherOf(tom,M),
 motherOf(M,GM).

We now try to solve
motherOf(tom,M)

This forces M = judy .
We then try to solve
motherOf(judy,GM)

None of the motherOf rules match
this goal, so we backtrack. No other
motherOf rule can solve
motherOf(tom,M)

so we backtrack again and try the
second grandMotherOf rule:

410CS 538 Spring 2002
©

grandMotherOf(X,GM) :-
 fatherOf(X,F),
 motherOf(F,GM).

This matches, forcing X = tom .
We have to solve
fatherOf(tom,F), motherOf(F,GM).

We can match the first goal with
fatherOf(tom,dick).

This forces F = dick .
We then must solve
motherOf(dick,GM)

which can be matched by
motherOf(dick,mary).

We have matched all our goals, so we
know the query is true, with
GM = mary .

411CS 538 Spring 2002
©

List Processing in Prolog
Prolog has a notation similar to “cons
cells” of Lisp and Scheme.
The “.” functor (predicate name) acts
like cons.
Hence .(a,b) in Prolog is essentially
the same as (a . b) in Scheme.
Lists in Prolog are formed much the
same way as in Scheme and ML:
[] is the empty list
[1,2,3] is an abbreviation for
.(1, .(2, .(3,[])))

just as
(1,2,3) in Scheme is an abbreviation
for
(cons 1 (cons 2 (cons 3 ())))

412CS 538 Spring 2002
©

The notation [H|T] represents a list
with H matching the head of the list
and T matching the rest of the list.
Thus [1,2,3] ≡ [1| [2,3]] ≡
[1,2| [3]] ≡ [1,2,3| []]

As in ML, “_” (underscore) can be
used as a wildcard or “don’t care”
symbol in matches.
Given the fact
 p([1,2,3,4]).

The query
 | ?- p([X|Y]).

answers
X = 1,

Y = [2,3,4]

413CS 538 Spring 2002
©

The query
p([_,_,X|Y]).

answers
X = 3,

Y = [4]

414CS 538 Spring 2002
©

List Operations in Prolog
List operations are defined using rules
and facts. The definitions are similar
to those used in Scheme or ML, but
they are non-procedural.
That is you don’t given an execution
order. Instead, you give recursive rules
and non-recursive “base cases” that
characterize the operation you are
defining.
Consider append :
 append([],L,L).

 append([H|T1],L2,[H,T3]) :-
 append(T1,L2,T3).

The first fact says that an empty list
(argument 1) appended to any list L
(argument 2) gives L (argument 3) as
its answer.

415CS 538 Spring 2002
©

The rule in line 2 says that if you take
a list that begins with H and has T1 as
the rest of the list and append it to a
list L then the resulting appended list
will begin with H.
Moreover, the rest of the resulting
list, T3, is the result of appending T1
(the rest of the first list) with L2 (the
second input list).
The query
 | ?- append([1],[2,3],[1,2,3]).

answers
Yes

because with H=1, T1=[] , L2 =[2,3]
and T3=[2,3] it must be the case
that append([],[2,3],[2,3]) is
true and fact (1) says that this is so.

416CS 538 Spring 2002
©

Inverting Inputs and Outputs
In Prolog the division between
“inputs” and “outputs” is
intentionally vague. We can exploit
this. It is often possible to “invert” a
query and ask what inputs would
compute a given output. Few other
languages allow this level of
flexibility.
 Consider the query
append([1],X,[1,2,3]).

This asks Prolog to find a list X such
that if we append [1] to X we will
get [1,2,3] .
 Prolog answers

X = [2,3]

417CS 538 Spring 2002
©

How does it choose this answer?
First Prolog tries to match the query
against fact (1) or rule (2).
Fact (1) doesn’t match (the first
arguments differ) so we match rule
(2).
This gives us H=1, T1=[] , L2=X and
T3 = [2,3] .
We next have to solve the body of
rule (2) which is

append([],L2,[2,3]).

Fact (1) matches this, and tells us
that L2=[2,3]=X , and that’s our
answer!

418CS 538 Spring 2002
©

The Member Relation
A common predicate when
manipulating lists is a membership
test—is a given value a member of a
list?
An “obvious” definition is a recursive
one similar to what we might
program in Scheme or ML:
member(X,[X|_]).
member(X,[_|Y]):- member(X,Y).

This definition states that the first
argument, X, is a member of the
second argument (a list) if X matches
the head of the list or if X is
(recursively) a member of the rest of
the list.

419CS 538 Spring 2002
©

Note that we don’t have to “tell”
Prolog that X can’t be a member of an
empty list—if we don’t tell Prolog
that something is true, it
automatically assumes that it must be
false.
Thus saying nothing about
membership in an empty list is the
same as saying that membership in an
empty list is impossible.
Since inputs and outputs in a relation
are blurred, we can use member in an
unexpected way—to iterate through a
list of values.

420CS 538 Spring 2002
©

If we want to know if any member of
a list L satisfies a predicate p, we can
simply write:
member(X,L),p(X).

There is no explicit iteration or
searching. We simply ask Prolog to
find an X such that member(X,L) is
true (X is in L) and p(X) is true.
Backtracking will find the “right”
value for X (if any such X exists).
This is sometimes called the “guess
and verify” technique.
Thus we can query
member(X,[3,-3,0,10,-10]),
 (X > 0).

This asks for an X in the list
[3,-3,0,10,-10] which is greater
than 0.
Prolog answers

421CS 538 Spring 2002
©

X = 3 ;
X = 10 ;

Note too that our “obvious”
definition of member is not the only
one possible.
An alternative definition (which is far
less obvious) is
member(X,L) :-
 append(_,[X|_],L).

This definition says X is a member of
L if I can take some list (whose value
I don’t care about) and append it to a
list that begins with X (and which
ends with values I don’t care about)
and get a list equal to L.
Said more clearly, X is a member of L
if X is anywhere in the “middle” of L.

422CS 538 Spring 2002
©

Prolog solves a query involving
member by partitioning the list L in
all possible ways, and checking to see
if X ever is the head of the second
list. Thus for member(X,[1,2,3]) , it
tries the partition [] and [1,2,3]
(exposing 1 as a possible X), then [1]
and [2,3] (exposing 2) and finally
[1,2] and [3] (exposing 3).

423CS 538 Spring 2002
©

Sorting Algorithms
Sorting algorithms are good examples
of Prolog’s definitional capabilities. In
a Prolog definition the “logic” of a
sorting algorithm is apparent,
stripped of the cumbersome details of
data structures and control structures
that dominate algorithms in other
programming languages.
Consider the simplest possible sort
imaginable, which we’ll call the
“naive sort.”
At the simplest level a sorting of a list
L requires just two things:
• The sorting is a permutation (a

reordering) of the values in L.

• The values are “in order” (ascending
or descending).

424CS 538 Spring 2002
©

We can implement this concept of a
sort directly in Prolog. We
(a) permute an input list
(b) check if it is in sorted order
(c) repeat (a) & (b) until a sorting is
 found.

425CS 538 Spring 2002
©

Permutations
Let’s first look at how permutations
are defined in Prolog. In most
languages generating permutations is
non-trivial—you need data structures
to store the permutations you are
generating and control structures to
visit all permutations in some order.
In Prolog, permutations are defined
quite concisely, though with a bit of
subtlety:
perm(X,Y) will be true if list Y is a
permutation of list X.
Only two definitions are needed:
perm([],[]).

perm(L,[H|T]) :-
 append(V,[H|U],L),
 append(V,U,W), perm(W,T).

426CS 538 Spring 2002
©

The first definition,
perm([],[]).

is trivial. An empty list may only be
permuted into another empty list.
The second definition is rather more
complex:
perm(L,[H|T]) :-
append(V,[H|U],L),
 append(V,U,W), perm(W,T).

This rule says a list L may be
permuted in to a list that begins with
H and ends with list T if:
(1) L may be partitioned into two
 lists, V and [H|U] . (That is, H is
 somewhere in the “middle” of L).
(2) Lists V and U (all of L except H)
 may be appended into list W.
(3) List W may be permuted into T.

427CS 538 Spring 2002
©

Let’s see perm in action:
| ?- perm([1,2,3],X).

X = [1,2,3] ;

X = [1,3,2] ;

X = [2,1,3] ;

X = [2,3,1] ;

X = [3,1,2] ;

X = [3,2,1] ;
no

We’ll trace how the first few answers
are computed. Note though that all
permutations are generated, and with
no apparent data structures or
control structures.
We start with L=[1,2,3] and
X=[H|T] .
We first solve append(V,[H|U],L) ,
which simplifies to
append(V,[H|U],[1,2,3]) .

428CS 538 Spring 2002
©

One solution to this goal is
V = [], H = 1, U = [2,3]

We next solve append(V,U,W) which
simplifies to append([],[2,3],W) .
The only solution for this is W=[2,3] .
Finally, we solve perm(W,T) , which
simplifies to perm([2,3],T) .
One solution to this is T=[2,3] .
This gives us our first solution:
[H|T]=[1,2,3] .
To get our next solution we backtrack.
Where is the most recent place we
made a choice of how to solve a goal?
It was at perm([2,3],T) . We chose
T=[2,3] , but T=[3,2] is another
solution. Using this solution, we get
out next answer [H|T]=[1,3,2] .

429CS 538 Spring 2002
©

Let’s try one more. We backtrack
again. No more solutions are possible
for perm([2,3],T) , so we backtrack
to an earlier choice point.
At append(V,[H|U],[1,2,3])
another solution is
V=[1], H = 2, U = [3]

Using this binding, we solve
append(V,U,W) which simplifies to
append([1],[3],W) . The solution to
this must be W=[1,3] .
We then solve perm(W,T) which
simplifies to perm([1,3],T) . One
solution to this is T=[1,3] . This
makes our third solution for [H|T] =
[2,1,3] .
You can check out the other bindings
that lead to the last three solutions.

430CS 538 Spring 2002
©

A Permutation Sort
Now that we know how to generate
permutations, the definition of a
permutation sort is almost trivial.
We define an inOrder relation that
characterizes our notion of when a
list is properly sorted:
inOrder([]).

inOrder([_]).

inOrder([A,B|T]) :-
 A =< B, inOrder([B|T]).

These definitions state that a null list,
and a list with only one element are
always in sorted order. Longer lists
are in order if the first two elements
are in proper order. (A=<B) checks
this and then the rest of the list,
excluding the first element, is
checked.

431CS 538 Spring 2002
©

Now our naive permutation sort is
only one line long:
naiveSort(L1,L2) :-
 perm(L1,L2), inOrder(L2).

And the definition works too!
| ?-
naiveSort([1,2,3],[3,2,1]).
no

?- naiveSort([3,2,1],L).

L = [1,2,3] ;
no

| ?-
naiveSort([7,3,88,2,1,6,77,
 -23,5],L).

L = [-23,1,2,3,5,6,7,77,88]

432CS 538 Spring 2002
©

Though this sort works, it is
hopelessly inefficient—it repeatedly
“shuffles” the input until it happens
to find an ordering that is sorted. The
process is largely undirected. We
don’t “aim” toward a correct ordering,
but just search until we get lucky.

433CS 538 Spring 2002
©

A Bubble Sort
Perhaps the best known sorting
technique is the interchange or
“bubble” sort. The idea is simple. We
examine a list of values, looking for a
pair of adjacent values that are “out
of order.” If we find such a pair, we
swap the two values (placing them in
correct order). Otherwise, the whole
list must be in sorted order and we
are done.
In conventional languages we need a
lot of code to search for out-of-order
pairs, and to systematically reorder
them. In Prolog, the whole sort may
be defined in a few lines:

434CS 538 Spring 2002
©

bubbleSort(L,L) :- inOrder(L).

bubbleSort(L1,L2) :-
 append(X,[A,B|Y],L1), A > B,
 append(X,[B,A|Y],T),
 bubbleSort(T,L2).

The first line says that if L is already
in sorted order, we are done.
The second line is a bit more complex.
It defines what it means for a list L2
to be a sorting for list L1 , using our
insight that we should swap out-of-
order neighbors. We first partition list
L1 into two lists, X and [A,B|Y] . This
“exposes” two adjacent values in L, A
and B. Next we verify that A and B are
out-of-order (A>B) . Next, in
append(X,[B,A|Y],T) , we
determine that list T is just our input
L, with A and B swapped into B
followed by A.

435CS 538 Spring 2002
©

Finally, we verify that
bubbleSort(T,L2) holds. That is, T
may be bubble-sorted into L2 .
This approach is rather more directed
than our permutation sort—we look
for an out-of-order pair of values,
swap them, and then sort the
“improved” list. Eventually there will
be no more out-of-order pairs, the
list will be in sorted order, and we will
be done.

436CS 538 Spring 2002
©

Merge Sort
Another popular sort in the “merge
sort” that we have already seen in
Scheme and ML. The idea here is to
first split a list of length L into two
sublists of length L/2. Each of these
two lists is recursively sorted. Finally,
the two sorted sublists are merged
together to form a complete sorted
list.
The bubble sort can take time
proportional to n2 to sort n elements
(as many as n2/2 swaps may be
needed). The merge sort does better—
it takes time proportional to n log 2 n
to sort n elements (a list of size n can
only be split in half log 2 n times).

437CS 538 Spring 2002
©

We first need Prolog rules on how to
split a list into two equal halves:
split([],[],[]).
split([A],[A],[]).
split([A,B|T],[A|P1],[B|P2]) :-
 split(T,P1,P2).

The first two lines characterize trivial
splits. The third rule distributes one of
the first two elements to each of the
two sublists, and then recursively
splits the rest of the list.

438CS 538 Spring 2002
©

We also need rules that characterize
how to merge two sorted sublists into
a complete sorted list:
merge([],L,L).
merge(L,[],L).
merge([A|T1],[B|T2],[A|L2]) :-
 A =< B, merge(T1,[B|T2],L2).
merge([A|T1],[B|T2],[B|L2]) :-
 A > B, merge([A|T1],T2,L2).

The first 2 lines handle merging null
lists. The third line handles the case
where the head of the first sublist is ≤
the head of the second sublist; the
final rule handles the case where the
head of the second sublist is smaller.

439CS 538 Spring 2002
©

With the above definitions, a merge
sort requires only three lines:
mergeSort([],[]).

mergeSort([A],[A]).
mergeSort(L1,L2) :-
 split(L1,P1,P2),
 mergeSort(P1,S1),

mergeSort(P2,S2),
merge(S1,S2,L2).

The first two lines handle the trivial
cases of lists of length 0 or 1. The last
line contains the full “logic” of a
merge sort: split the input list, L into
two half-sized lists P1 and P2. Then
merge sort P1 into S1 and P2 into S2.
Finally, merge S1 and S2 into a sorted
list L2 . That’s it!

440CS 538 Spring 2002
©

Quick Sort
The merge sort partitions its input list
rather blindly, alternating values
between the two lists. What if we
partitioned the input list based on
values rather than positions?
The quick sort does this. It selects a
“pivot” value (the head of the input
list) and divides the input into two
sublists based on whether the values
in the list are less than the pivot or
greater than or equal to the pivot.
Next the two sublists are recursively
sorted. But now, after sorting, no
merge phase is needed. Rather, the
two sorted sublists can simply be
appended, since we know all values in
the first list are less than all values in
the second list.

441CS 538 Spring 2002
©

We need a Prolog relation that
characterizes how we will do our
partitioning. We we define
partition(E,L1,L2,L3) to be true
if L1 can be partitioned into L2 and
L3 using E as the pivot element. The
necessary rules are:
partition(E,[],[],[]).
partition(E,[A|T1],[A|T2],L3) :-
 A<E, partition(E,T1,T2,L3).
partition(E,[A|T1],L2,[A|T3]) :-
 A>=E, partition(E,T1,L2,T3)

The first line defines a trivial partition
of a null list. The second line handles
the case in which the first element of
the list to be partitioned is less than
the pivot, while the final line handles
the case in which the list head is
greater than or equal to the pivot.

442CS 538 Spring 2002
©

With our notion of partitioning
defined, the quicksort itself requires
only 2 lines:
qsort([],[]).
qsort([A|T],L) :-

partition(A,T,L1,L2),
qsort(L1,S1),qsort(L2,S2),
append(S1,[A|S2],L).

The first line defines a trivial sort of
an empty list.
The second line says to sort a list that
begins with A and ends with list T, we
partition T into sublists L1 and L2 ,
based on A. Then we recursively quick
sort L1 into S1 and L2 into S2.
Finally we append S1 to [A|S2]
(A must be > all values in S1 and A
must be ≤ all values in S2). The result
is L, a sorting of [A|T] .

443CS 538 Spring 2002
©

Arithmetic in Prolog
The = predicate can be used to test
bound variables for equality (actually,
identity).
If one or both of =’s arguments are
free variables, = forces a binding or
an equality constraint.
Thus
| ?- 1=2.
no

| ?- X=2.

X = 2

| ?- Y=X.

Y = X = _10751

| ?- X=Y, X=joe.

X = Y = joe

444CS 538 Spring 2002
©

Arithmetic Terms are Symbolic
Evaluation of an arithmetic term into
a numeric value must be forced.
That is, 1+2 is an infix representation
of the relation +(1,2) . This term is
not an integer!
Therefore
| ?- 1+2=3.
no

To force arithmetic evaluation, we use
the infix predicate is .
The right-hand side of is must be all
ground terms (literals or variables that
are already bound). No free
(unbound) variables are allowed.

445CS 538 Spring 2002
©

Hence
|?- 2 is 1+1.
yes

| ?- X is 3*4.
X = 12

| ?- Y is Z+1.
! Instantiation error in argument
2 of is/2
! goal: _10712 is _10715+1

The requirement that the right-hand
side of an is relation be ground is
essentially procedural. It exists to
avoid having to invert complex
equations. Consider,
(0 is (I**N)+(J**N)-K**N)), N>2.

446CS 538 Spring 2002
©

Counting in Prolog
Rules that involve counting often use
the is predicate to evaluate a
numeric value.
Consider the relation len(L,N) that
is true if the length of list L is N.
len([],0).

len([_|T],N) :-
 len(T,M), N is M+1.

| ?- len([1,2,3],X).

X = 3

| ?- len(Y,2).

Y = [_10903,_10905]

The symbols _10903 and _10905 are
“internal variables” created as needed
when a particular value is not forced
in a solution.

447CS 538 Spring 2002
©

Debugging Prolog
Care is required in developing and
testing Prolog programs because the
language is untyped; undeclared
predicates or relations are simply
treated as false.
Thus in a definition like
 adj([A,B|_]) :- A=B.

 adj([_,B|T]) :- adk([B|T]).

| ?- adj([1,2,2]).
no

(Quintus does warn when an
undefined relation is referenced, but
many other Prologs don’t).

448CS 538 Spring 2002
©

Similarly, given
member(A,[A|_]).

 member(A,[_|T]) :-
 member(A,[T]).

| ?- member(2,[1,2]).

Infinite recursion! (Why?)

If you’re not sure what is going on,
Prolog’s trace feature is very handy.
The command
trace.

turns on tracing. (notrace turns
tracing off).
Hence
| ?- trace.
yes

[trace]

| ?- member(2,[1,2]).

449CS 538 Spring 2002
©

(1) 0 Call: member(2,[1,2]) ?

 (1) 1 Head [1->2]:
member(2,[1,2]) ?

 (1) 1 Head [2]:
member(2,[1,2]) ?

(2) 1 Call: member(2,[[2]]) ?

 (2) 2 Head [1->2]:
member(2,[[2]]) ?

 (2) 2 Head [2]:
member(2,[[2]]) ?

 (3) 2 Call: member(2,[[]]) ?

 (3) 3 Head [1->2]:
member(2,[[]]) ?

(3) 3 Head [2]: member(2,[[]])
?

 (4) 3 Call: member(2,[[]]) ?

 (4) 4 Head [1->2]:
member(2,[[]]) ?

(4) 4 Head [2]: member(2,[[]])
?

 (5) 4 Call: member(2,[[]]) ?

450CS 538 Spring 2002
©

Termination Issues in Prolog
Searching infinite domains (like
integers) can lead to non-
termination, with Prolog trying every
value.
Consider
odd(1).

odd(N) :- odd(M), N is M+2.

| ?- odd(X).

X = 1 ;

X = 3 ;

X = 5 ;
X = 7

451CS 538 Spring 2002
©

A query
 | ?- odd(X), X=2.

going into an infinite search,
generating each and every odd
integer and finding none is equal to
2!
The obvious alternative,
odd(2) (which is equivalent to
X=2, odd(X)) also does an infinite,
but fruitless search.
We’ll soon learn that Prolog does
have a mechanism to “cut off”
fruitless searches.

452CS 538 Spring 2002
©

Definition Order can Matter
Ideally, the order of definition of
facts and rules should not matter.
But,
in practice definition order can
matter. A good general guideline is to
define facts before rules. To see why,
consider a very complete database of
motherOf relations that goes back as
far as
motherOf(cain,eve).

Now we define
isMortal(X) :-
 isMortal(Y), motherOf(X,Y).

isMortal(eve).

453CS 538 Spring 2002
©

These definitions state that the first
woman was mortal, and all
individuals descended from her are
also mortal.
But when we try as trivial a query as
| ?- isMortal(eve).

we go into an infinite search!
Why?
Let’s trace what Prolog does when it
sees
| ?- isMortal(eve).

It matches with the first definition
involving isMortal , which is
isMortal(X) :-
 isMortal(Y), motherOf(X,Y).

It sets X=eve and tries to solve
isMortal(Y), motherOf(eve,Y).

It will then expand isMortal(Y) into

454CS 538 Spring 2002
©

isMortal(Z), motherOf(Y,Z).

An infinite expansion ensues.
The solution is simple—place the
“base case” fact that terminates
recursion first.
If we use
isMortal(eve).

isMortal(X) :-
 isMortal(Y), motherOf(X,Y).
yes

| ?- isMortal(eve).

yes

But now another problem appears!
If we ask
| ?- isMortal(clarkKent).

we go into another infinite search!
Why?

455CS 538 Spring 2002
©

The problem is that Clark Kent is from
the planet Krypton, and hence won’t
appear in our motherOf database.
Let’s trace the query.
It doesn’t match isMortal(eve) .
We next try
isMortal(clarkKent) :-
 isMortal(Y),
 motherOf(clarkKent,Y).

We try Y=eve , but eve isn’t Clark’s
mother. So we recurse, getting:
isMortal(Z), motherOf(Y,Z),
motherOf(clarkKent,Y).

But eve isn’t Clark’s grandmother
either! So we keep going further back,
trying to find a chain of descendents
that leads from eve to clarkKent .
No such chain exists, and there is no

456CS 538 Spring 2002
©

limit to how long a chain Prolog will
try.
There is a solution though!
We simply rewrite our recursive
definition to be
 isMortal(X) :-
 motherOf(X,Y),isMortal(Y).

This is logically the same, but now we
work from the individual X back
toward eve , rather than from eve
toward X. Since we have no
motherOf relation involving
clarkKent , we immediately stop our
search and answer no!

457CS 538 Spring 2002
©

Extra-logical Aspects of
Prolog

To make a Prolog program more
efficient, or to represent negative
information, Prolog needs features
that have a procedural flavor. These
constructs are called “extra-logical”
because they go beyond Prolog’s core
of logic-based inference.

458CS 538 Spring 2002
©

The Cut
The most commonly used extra-
logical feature of Prolog is the “cut
symbol,” “!”
A ! in a goal, fact or rule “cuts off”
backtracking.
In particular, once a ! is reached (and
automatically matched), we may not
backtrack across it. The rule we’ve
selected and the bindings we’ve
already selected are “locked in” or
“frozen.”
For example, given
x(A) :- y(A,B), z(B) , ! , v(B,C).

once the ! is hit we can’t backtrack
to resatisfy y(A,B) or z(B) in some
other way. We are locked into this

459CS 538 Spring 2002
©

rule, with the bindings of A and B
already in place.
We can backtrack to try various
solutions to v(B,C) .
It is sometimes useful to have several
! ’s in a rule. This allows us to find a
partial solution, lock it in, find a
further solution, then lock it in, etc.
For example, in a rule
a(X) - b(X), !, c(X,Y), ! , d(Y).

we first try to satisfy b(X) , perhaps
trying several facts or rules that
define the b relation. Once we have a
solution to b(X) , we lock it in, along
with the binding for X.
Then we try to satisfy c(X,Y) , using
the fixed binding for X, but perhaps
trying several bindings for Y until
c(X,Y) is satisfied.

460CS 538 Spring 2002
©

We then lock in this match using
another ! .
Finally we check if d(Y) can be
satisfied with the binding of Y already
selected and locked in.

461CS 538 Spring 2002
©

When are Cuts Needed?
A cut can be useful in improving
efficiency, by forcing Prolog to avoid
useless or redundant searches.
Consider a query like
member(X,list1),

member(X,list2), isPrime(X).

This asks Prolog to find an X that is in
list1 and also in list2 and also is
prime.
X will be bound, in sequence, to each
value in list1 . We then check if X is
also in list2 , and then check if X is
prime.
Assume we find X=8 is in list1 and
list2 . isPrime(8) fails (of course).
We backtrack to member(X,list2)
and try to resatisfy it with the same
value of X.

462CS 538 Spring 2002
©

But clearly there is never any point in
trying to resatisfy member(X,list2) .
Once we know a value of X is in
list2 , we test it using isPrime(X) .
If it fails, we want to go right back to
member(X,list1) and get a
different X.
To create a version of member that
never backtracks once it has been
satisfied we can use ! .
We define
member1(X,[X|_]) :- !.
member1(X,[_|Y]) :-
 member1(X,Y).

Our query is now
member(X,list1),
 member1(X,list2), isPrime(X).

(Why isn’t member1 used in both
terms?)

463CS 538 Spring 2002
©

Expressing Negative
Information

Sometimes it is useful to state rules
about what can’t be true. This allows
us to avoid long and fruitless
searches.
fail is a goal that always fails. It can
be used to represent goals or results
that can never be true.
Assume we want to optimize our
grandMotherOf rules by stating that
a male can never be anyone’s
grandmother (and hence a complete
search of all motherOf and
fatherOf relations is useless).
A rule to do this is
grandMotherOf(X,GM) :-
 male(GM), fail.

464CS 538 Spring 2002
©

This rule doesn’t do quite what we
hope it will!
Why?
The standard approach in Prolog is to
try other rules if the current rule fails.
Hence we need some way to “cut off”
any further backtracking once this
negative rule is found to be
applicable.
This can be done using
 grandMotherOf(X,GM) :-
 male(GM),!, fail.

465CS 538 Spring 2002
©

Other Extra-Logical
Operators

• assert and retract

These operators allow a Prolog
program to add new rules during
execution and (perhaps) later remove
them. This allows programs to learn
as they execute.
• findall

Called as findall(X,goal,List)
where X is a variable in goal . All
possible solutions for X that satisfy
goal are found and placed in List .
For example,
findall(X,
(append(_,[X|_],[-1,2,-3,4]),(X<0)),
 L).

L = [-1,-3]

466CS 538 Spring 2002
©

• var and nonvar

var(X) tests whether X is unbound
(free).
nonvar(Y) tests whether Y is bound
(no longer free).
These two operators are useful in
tailoring rules to particular
combinations of bound and unbound
variables.
For example, the rule
grandMotherOf(X,GM) :-
 male(GM),!, fail.

might backfire if GMis not yet bound.
We could set GM to a person for
whom male(GM) is true, then fail
because we don’t want grandmothers
who are male!

467CS 538 Spring 2002
©

To remedy this problem. we use the
rule only when GM is bound. Our rule
becomes
grandMotherOf(X,GM) :-
 nonvar(GM), male(GM),!, fail.

468CS 538 Spring 2002
©

An Example of Extra-Logical
Programming

Factorial is a very common example
program. It’s well known, and easy to
code in most languages.
In Prolog the “obvious” solution is:
fact(N,1) :- N =< 1.

fact(N,F) :- N > 1, M is N-1,
 fact(M,G), F is N*G.

This definition is certainly correct. It
mimics the usual recursive solution.
But,
in Prolog “inputs” and “outputs” are
less distinct than in most languages.
In fact, we can envision 4 different
combinations of inputs and outputs,
based on what is fixed (and thus an

469CS 538 Spring 2002
©

input) and what is free (and hence is
to be computed):

1. N and F are both ground (fixed). We
simply must decide if F=N!

2. N is ground and F is free. This is
how fact is usually used. We must
compute an F such that F=N!

3. F is fixed and N is free. This is an
uncommon usage. We must find an
N such that F=N!, or determine that
no such N is possible.

4. Both N and F are free. We generate,
in sequence, pairs of N and F values
such that F=N!

470CS 538 Spring 2002
©

Our solution works for combinations
1 and 2 (where N is fixed), but not
combinations 3 and 4. (The problem
is that N =< 1 and N > 1 can’t be
satisfied when N is free).
We’ll need to use nonvar and ! to
form a solution that works for all 4
combinations of inputs.
We first handle the case where N is
ground:
fact(1,1).
fact(N,1) :- nonvar(N), N =< 1, ! .
fact(N,F) :- nonvar(N) , N > 1, !,
M is N-1, fact(M,G), F is N*G, ! .

The first rule handles the base case of
N=1.
The second rule handles the case of
N<1.

471CS 538 Spring 2002
©

The third rule handles the case of
N >1 . The value of F is computed
recursively. The first ! in each of
these rules forces that rule to be the
only one used for the values of N that
match. Moreover, the second ! in the
third rule states that after F is
computed, further backtracking is
useless; there is only one F value for
any given N value.
To handle the case where F is bound
and N is free, we use
fact(N,F) :- nonvar(F), !,
 fact(M,G), N is M+1, F2 is N*G,
 F =< F2, !, F=F2.

In this rule we generate N, F2 pairs
until F2 >= F . Then we check if
F=F2. If this is so, we have the N we
want. Otherwise, no such N can exist
and we fail (and answer no).

472CS 538 Spring 2002
©

For the case where both N and F are
free we use:
fact(N,F) :- fact(M,G), N is M+1,
 F is N*G.

This systematically generates N, F
pairs, starting with N=2, F=2 and then
recursively building successor values
(N=3, F=6, then N=4, F=24 , etc.)

473CS 538 Spring 2002
©

Parallelism in Prolog
One reason that Prolog is of interest
to computer scientists is that its
search mechanism lends itself to
parallel evaluation.
In fact, it supports two different
kinds of parallelism:
• AND Parallelism

• OR Parallelism

474CS 538 Spring 2002
©

And Parallelism
When we have a goal that contains
subgoals connected by the “,” (And)
operator, we may be able to utilize
“and parallelism.”
Rather than solve subgoals in
sequence, we may be able to solve
them in parallel if bindings can be
properly propagated.
Thus in
a(X), b(X,Y), c(X,Z), d(Y,Z).

we may be able to first solve a(X) ,
binding X, then solve b(X,Y) and
c(X,Z) in parallel, binding Y and Z,
then finally solve d(Y,Z) .

475CS 538 Spring 2002
©

An example of this sort of and
parallelism is
member(X,list1),
 member1(X,list2), isPrime(X).

Here we can let member(X,list1)
select an X value, then test
member1(X,list2) and isPrime(X)
in parallel. If one or the other fails,
we just select another X from list1
and retest member1(X,list2) and
isPrime(X) in parallel.

476CS 538 Spring 2002
©

OR Parallelism
When we match a goal we almost
always have a choice of several rules
or facts that may be applicable.
Rather than try them in sequence, we
can try several matches of different
facts or rules in parallel. This is “or
parallelism.”
Thus given
 a(X) :- b(X).

 a(Y) :- c(Y).

when we try to solve
a(10).

we can simultaneously check both
b(10) and c(10) .

477CS 538 Spring 2002
©

Recall our definition of
member(X,L) :-
 append(P,[X|S],L).

where append is defined as
append([],L,L).

append([X|L1],L2,[X|L3]) :-
 append(L1,L2,L3).

Assume we have the query
| ? member(2,[1,2,3]).

This immediately simplifies to
append(P,[2|S],[1,2,3]).

Now there are two append
definitions we can try in parallel:
(1) match append(P,[2|S],[1,2,3])

with append([],L,L) . This requires
that [2|S] = [1,2,3] , which must
fail.
(2) match append(P,[2|S],[1,2,3])

with append([X|L1],L2,[X,L3]) .

478CS 538 Spring 2002
©

This requires that P=[X|L1] ,
[2|S]=L2 , [1,2,3]=[X,L3] .
Simplifying, we require that X=1,
P=[1|L1] , L3=[2,3] .
Moreover we must solve
append(L1,L2,L3) which simplifies
to append(L1,[2|S],[2,3]) .
We can match this call to append in
two different ways, so or parallelism
can be used again.
When we try matching
append(L1,[2|S],[2,3]) against
append([],L,L) we get
[2|S]=[2,3] , which is satisfiable if S
is bound to [3] . We therefore signal
back that the query is true.

479CS 538 Spring 2002
©

Speculative Parallelism
Prolog also lends itself nicely to
speculative parallelism. In this form of
parallelism, we “guess” or speculate
that some computation may be
needed in the future and start it early.
This speculative computation can
often be done in parallel with the
main (non-speculative) computation.
Recall our example of
member(X,list1),
 member1(X,list2), isPrime(X).

After member(X,list1) has
generated a preliminary solution for
X, it is tested (perhaps in parallel) by
member1(X,list2) and
isPrime(X) .
But this value of X may be rejected by
one or both of these tests. If it is,

480CS 538 Spring 2002
©

we’ll ask member(X,list1) to find a
new binding for X. If we wish, this
next binding can be generated
speculatively, while the current value
of X is being tested. In this way if the
current value of X is rejected, we’ll
have a new value ready to try (or
know that no other binding of X is
possible).
If the current value of X is accepted,
the extra speculative work we did is
ignored. It wasn’t needed, but was
useful insurance in case further X
bindings were needed.

481CS 538 Spring 2002
©

Reading Assignment
• Java for C++ Programmers

(linked from class web page)

• Scott: Chapter 10

482CS 538 Spring 2002
©

Java & Object-Oriented
Programming

Java is a fairly new and very popular
programming language designed to
support secure, platform-independent
programming.
It is a good alternative to C or C++,
trading a bit of efficiency for easier
programming, debugging and
maintenance.
Java is routinely interpreted (at the
byte-code level), making it
significantly slower than compiled C
or C++. However true Java compilers
exist, and are becoming more wide-
spread. (IBM’s Jalapeno project is a
good example). When compiled,
Java’s execution speed is close to that
of C or C++.

483CS 538 Spring 2002
©

Basic Notions
In Java data is either primitive or an
object (an instance of some class).
All code is written inside classes, so
Java programming consists of writing
classes.
Primitive data types are quite close to
those of C or C++:
boolean (not a numeric type)
char (Unicode, 16 bits)
byte

short

int

long (64 bits)
float

double

484CS 538 Spring 2002
©

Objects
• All Java objects are instances of classes.

• All objects are heap-allocated, with
automatic garbage collection.

• A reference to an object, in a variable,
parameter or another object, is actually a
pointer to some object allocated within
the heap.

• No explicit pointer manipulation
operations (like * or -> or ++) are
needed or allowed.

• Example:
class Point {int x,y;}

 Point data = new Point();

485CS 538 Spring 2002
©

• Declaring an object reference (like class
Point) does not automatically allocate
space for an object. The reference is
initialized to null unless an explicit
initializer is included.

• Fields are accessed just as they are in C:
data.x references field x in object
data .

• Object references are automatically
checked for validity (null or non-null).
Hence
data.x = 0;
forces a run-time exception if data
contains null rather than a valid object
reference.

486CS 538 Spring 2002
©

• Java makes it impossible for an object
reference to access an illegal address. A
reference is either null or a pointer to a
valid, type-correct object in the heap.
(This makes Java programs far more
secure and reliable than C or C++
programs).

487CS 538 Spring 2002
©

Class Members
Classes contain members. Class
members are either fields (data) or
methods (functions).
Example:
 class Point {

 int x,y;

 void clear() {x=0; y=0;}
 }

 Point d = new Point():

 d.clear();

A special method is a constructor.
A constructor has no result type. It is
used only to define the initialization
of an object after the object has been
created.

488CS 538 Spring 2002
©

Constructors may be overloaded.

class Point {

 int x,y;

 Point() {x=0; y=0;}

 Point(int xin, int yin) {

 x = xin; y = yin;
 }
}

489CS 538 Spring 2002
©

Static Members
Class members may be static.
A static member is allocated only
once—for all instances of the class.
Ordinary members (called instance
members) apply only to a particular
class instance (i.e., only one object
created from the class definition).
class Point {

 int x,y;
 static int howMany = 0;

 Point() {x=0; y=0;
 howMany++;}

 static void reset() {

 howMany = 0;
 }
}

490CS 538 Spring 2002
©

Static member functions (methods)
may not access non-static data.
(Why?)
Static members are accessed using a
class name rather than the name of
an object reference.
For example,
 Point.reset();

491CS 538 Spring 2002
©

Visibility of Class Members
Class members may be declared as
public, private or protected.
Public members may be accessed from
outside a class.
Private members of a class may be
accessed only from with the class
itself.
Protected members may be accessed
only from with the class itself or from
within one of its subclasses.
Members nor marked public, private
or protected are shared at the
package level—similar to C++’s friend
mechanism.

492CS 538 Spring 2002
©

Example:
 class Customer {

 int id;

 private int pinCode;

}

Customer me = new Customer();

me.id = 1234; //OK

me.pinCode = 7777;
//Compile-time error

In a class, a special method, main ,
declared as
 static public void
 main(String[] args)

is automatically executed when a
class is run.
main is very useful as a “test driver”
for auxiliary and library classes.

493CS 538 Spring 2002
©

Final Members
A field may be declared final making
it effectively a constant.
class Point {

 int x,y;

 static final Point origin
= new Point(0,0);

 Point(int xin, int yin) {

 x = xin; y = yin;
 }
}

Final fields may be used to create
constants within a class:
class Card {
 final static int Clubs = 1;
 final static int Diamonds = 2;
 final static int Hearts = 3;
 final static int Spades = 4;
 int suit = Spades;
}

494CS 538 Spring 2002
©

Inside a class suit names are available
for use without qualification. E.g.,
int suit = Spades;

Outside a class, the field names must
be qualified using the class name:
Card c = new Card();

c.suit = Card.Clubs;

Methods may also be marked as final.
This forbids redeclaration in a
subclass, allowing a more efficient
implementation. Security may also be
improved if a key method is known to
be unchangeable.

495CS 538 Spring 2002
©

Java Arrays
In Java, arrays are implemented as a
special kind of class. Arrays of
primitive types are implemented as an
object that contains a block of values
within it. Arrays of objects are
implemented as an object that
contains a block of object references
within it. Allocating an array of
objects does not allocate the objects
themselves. Hence within an array of
objects, some positions may reference
actual objects while other may
contain null (this can be
advantageous) if objects are large.
Multi-dimensional arrays are arrays
of arrays. Arrays within an array need
not all have the same size.
Hence we may see

496CS 538 Spring 2002
©

int[][] TwoDim = new int[3][];

TwoDim[0] = new int[1];

TwoDim[1] = new int[2];

TwoDim[2] = new int[3];

The size of an array is part of its
value; not its type.
Thus
int [] A = new int[10];

int [] B = new int[5];

A = B;

is valid.
Pascal showed that making an array’s
size part of its type is undesirable.
(Why?)
Still, forcing an array to have a fixed
size can be necessary (e.g., an array
indexed by months). (How do we
simulate a fixed-size array?).

497CS 538 Spring 2002
©

Subclassing in Java
When a new class is defined in terms
of an existing class, the new class
extends the existing class. The new
class inherits all public and protected
members of its parent (or base) class.
The new class may add new methods
or fields. It may also redefine
inherited methods or fields.
class Point {

 int x,y;
 Point(int xin, int yin) {
 x = xin; y = yin;
 }
 static float dist(
 Point P1, Point P2) {
 return (float) Math.sqrt(
 (P1.x-P2.x)*(P1.x-P2.x)+

(P1.y-P2.y)*(P1.y-P2.y));
 }
}

498CS 538 Spring 2002
©

class Point3 extends Point {

 int z;
 Point3(int xin, int yin,
 int zin) {
 super(xin,yin); z=zin;
 }
 static float dist(
 Point3 P1, Point3 P2) {
 float d=Point.dist(P1,P2);
 return (float) Math.sqrt(
 (P1.z-P2.z)*(P1.z-P2.z)+

 d*d);
 }
}

Note that although Point3 redefines
dist , the old definition of dist is
still available by using the parent
class as a qualifier (Point.dist).
The same is true for fields that are
hidden when a field in a parent is
redeclared.

499CS 538 Spring 2002
©

Non-static methods are automatically
virtual: a redefined method is
automatically used in all inherited
methods including those defined in
parent classes that think they are
using an earlier definition of the
class.
Example:
 class C {

 void DoIt()(PrintIt();}
 void PrintIt()
 {println("C rules!");}
 }
 class D extends C {
 void PrintIt()
 {println("D rules!");}
 void TestIt() {DoIt();}
 }
 D dvar = new D();
 dvar.TestIt();

D rules! is printed.

500CS 538 Spring 2002
©

Static methods in Java are not virtual
(this can make them easier to
implement efficiently).

501CS 538 Spring 2002
©

Abstract Classes and Methods
Sometimes a Java class is not meant
to be used by itself because it is
intentionally incomplete.
Rather, the class is meant to be
starting point for the creation (via
subclassing) of more complete
classes.
Such classes are abstract.
Example:
abstract class Shape {

 Point location;

}

class Circle extends Shape {

 float radius;

}

502CS 538 Spring 2002
©

Methods can also be made abstract to
indicate that their actual definition
will appear in subclasses:
abstract class Shape {
 Point location;
 abstract float area();
}
class Circle extends Shape {
 float radius;
 float area(){
 return Math.pi*radius*radius;
 }
}

503CS 538 Spring 2002
©

Subtyping and Inheritance
We can use a subtyping mechanism,
as found in C++ or Java, for two
different purposes:
• We may wish to inherit the actual

implementations of classes and
members to use as the basis of a
more complete or extended class.
To inherit an implementation, we say
a given class “extends” an existing
class:
class Derived extends Base
 { ... };

Class Derived contains all of the
members of Base plus any others it
cares to add.

504CS 538 Spring 2002
©

• We may wish to inherit an interface—
a set of method names and values
that will be available for use.
To inherit (or claim) an interface, we
use a Java interface definition.
An interface doesn’t implement
anything; rather, it gives a name to a
set of operations or values that may
be available within one or more
classes.

505CS 538 Spring 2002
©

Why are Interfaces Important?
Many classes, although very different,
share a common subset of values or
operations. We may be willing to use
any such class as long as only
interface values or operations are
used.
For example, many objects can be
ordered (or at least partially-ordered)
using a “less than” operation.
If we always implement less than the
same way, for example,
boolean lessThan(Object o1,

 Object o2);

then we can create an interface that
admits all classes that know about
the lessThan function:

506CS 538 Spring 2002
©

interface Compare {

 boolean lessThan(Object o1,
 Object o2);

}

Now different classes can each
implement the Compare interface,
proclaiming to the world that they
know how to compare objects of the
class they define:
class IntCompare implements Compare {
 public boolean lessThan(Object i1,
 Object i2){
 return ((Integer)i1).intValue() <
 ((Integer)i2).intValue();}
}
class StringCompare implements
 Compare {
 public boolean lessThan(Object i1,
 Object i2){
 return
((String)i1).compareTo((String)i2)<0;
}}

507CS 538 Spring 2002
©

The advantage of using interfaces is
that we can now define a method or
class that only depends on the given
interface, and which will accept any
type that implements that interface.
class PrintCompare {
 public static void printAns(
 Object v1, Object v2, Compare c){
 System.out.println(
 v1.toString() + " < " +

v2.toString() + " is " +
 new Boolean(c.lessThan(v1,v2))
 .toString());
} }
class Test {
 public static void
 main(String args[]){
 Integer i1 = new Integer(2);
 Integer i2 = new Integer(1);
 PrintCompare.printAns(
 i1,i2,new IntCompare());
 String s2 = "abcdef";
 String s1 = "xyzaa";
 PrintCompare.printAns(
 s1,s2,new StringCompare());}}

508CS 538 Spring 2002
©

Since classes may have many methods
and modes of use or operation, a
given class may implement many
different interfaces. For example,
many classes support the Clonable
interface, which states that objects of
the class may be duplicated (cloned).

509CS 538 Spring 2002
©

Multiple Inheritance
We have seen that a class may be
derived from a given parent class. It is
sometimes useful to allow a class to
be derived from more than one
parent, inheriting members of all
parents. This is multiple inheritance; it
is allowed by C++ and Python, but
not by Java.
The basic idea is that sometimes we
want a “composite” object formed
from more than one source. Hence a
Computer object can be viewed as
both a PhysicalObject (with
height, weight, color, cost, etc.) and
also a CPUImplementation (with
memory size, processor design,
processor speed, I/O ports, etc.)

510CS 538 Spring 2002
©

Using multiple inheritance we merge
aspects of a PhysicalObject and a
CPUImplementation , and perhaps
add additional data:
class PhysicalObject {
 float height, width, weight;
 Color outsideColor;
 ... }
class CPUImplementation {
 CPUClass CPUKind;
 int memorySize, CPUSpeed;
 ...
}
class Computer: PhysicalObject,
 CPUImplementation {
 String myURL; ...
}

The advantages of multiple
inheritance are obvious—you can
build a class from many sources
rather than just one.

511CS 538 Spring 2002
©

There are problems though:
• If the same name appears in more

than one parent, which is used? For
example, if both parents contain a
“copyright” field, which do you get?
C++ forbids access to fields common
to several parents, though accidental
clashes of member names are
certainly possible. Python relies on
order of specification of the parents
(which can be somewhat arbitrary).

• Access to fields and methods can be
less efficient. A method in a parent
class can’t know how fields in derived
class will be allocated when multiple
parents may exist. Hence some form
of indirection may be needed.
For example, in class
PhysicalObject , we may believe

512CS 538 Spring 2002
©

that height is the first field
allocated, while in
CPUImplementation we may
believe that CPUKind is allocated
first. But in class Computer , which
contains both height and CPUKind ,
both fields can’t come first.

513CS 538 Spring 2002
©

Exceptions in Java
Java provides a fairly elaborate
exception handling mechanism based
on the throw-catch model.
All exceptions are objects, required to
be a subclass of Throwable .
Class Throwable has two subclasses,
Exception and Error . Class
Exception has a subclass
RuntimeException .
Exceptions may be explicitly thrown
(using a throw statement) or they
may be implicitly thrown as the result
of a run-time error.
For example, an
ArithmeticException is thrown for
certain run-time arithmetic errors,
like division by zero.

514CS 538 Spring 2002
©

Unlike other languages, Java divides
exceptions into two general classes:
checked and unchecked.
A checked exception must either be
caught (using a try-catch block) or
propagated (by marking a method as
throwing the exception).
This means that checked exceptions
cannot be ignored—you must be
prepared to catch them or you must
“advertise” to your callers that you
may throw an exception back to
them.
Unchecked exceptions need not be
caught or marked as potentially
thrown. This makes exception
handling for such exceptions
optional. Unchecked exceptions are
typically those that might occur so

515CS 538 Spring 2002
©

often (like NullPointerException
or ArithmeticException) that
forced checks could unnecessarily
clutter a program without significant
benefit.
How are checked and unchecked
exceptions distinguished?
• Any exception that is a member (or

subclass) of Error or
RuntimeException is unchecked.

• All other exceptions must be checked.
Exceptions are propagated
dynamically:
• When an exception is thrown

(explicitly or implicitly) the
innermost try-catch block that can
“catch” the exception is selected, and

516CS 538 Spring 2002
©

the catch block that matches the
exception is executed.

• A catch block “catches” a given
exception if the class of the
exception is the same as the class
used in the catch. An exception that
is a subclass of the catch’s exception
class will also be caught.
Thus an catch that handles class
Throwable catches all exceptions.

• If no catch can handle the exception
in the current method, a return to the
method’s caller is forced, and the
exception is rethrown from the point
of call.

• This process is repeated until a catch
that can handle the exception is
found or until we force a return from
the main method.

517CS 538 Spring 2002
©

• If a return from the main method is
forced, no handler exists. A run-time
error message is printed (“Uncaught
exception”) and execution is
terminated.

• One of the limitations of Java’s
exception mechanism (and similar
mechanisms found in other
languages) is that there is no “retry”
mechanism. Once an exception is
thrown, we never go back to the
point where the exception occurred.
This is why Scheme’s call/cc
mechanism is considered so special
and unique.

518CS 538 Spring 2002
©

Example:
class badValue extends Exception{
 float value;
 badValue(float f) {value=f;} }

float sqrt(float val)
 throws badValue {
 if (val < 0.0)
 throw new badValue(val);
 else return
 (float) Math.sqrt(val); }

try {
 System.out.println(
 "Ans = " + sqrt(-123.0));
} catch (badValue b) {
 System.out.println(
 "Can't take sqrt of "+b)
}

519CS 538 Spring 2002
©

Reading Assignment
• Pizza Tutorial

(linked from class web page)

520CS 538 Spring 2002
©

Threads and Parallelism in Java
Java is one of the few “main stream”
programming languages to explicitly
provide for user-programmed
parallelism in the form of threads.
A Java programmer may organize a
program as several threads that may
execute concurrently.
Even if the program is run on a uni-
processor, use of threads may improve
performance. This is because the
threads can be multi-programmed,
with threads switched automatically
on I/O delays, page faults or even
cache misses.
A program that is designed to support
multiple threads is also “prepared” for
future upgrades to multiprocessors or
multi-threaded processors.

521CS 538 Spring 2002
©

Java Threads
In Java any class that implements the
Runnable interface can be started as
a concurrent thread:
 interface Runnable {

 public void run();

 }

When the thread is started, the
method run begins to execute
(perhaps concurrently with other
threads of the main program).
You create a thread using the Thread
constructor:

new Thread(RunnableObject)

Creating a thread does not start it;
you must execute the start method
within the Thread object.

522CS 538 Spring 2002
©

When this is done, the run method
immediately starts, and continues
until that method terminates
normally, or it throws an uncaught
exception, or it is explicitly stopped,
or the main program stops.
On uniprocessors, thread execution is
interleaved; on multiprocessors or
multithreaded architectures execution
can be concurrent.

class DoSort implements Runnable {
 int [] data;
 DoSort(int[] in) {data=in;}
 public void run(){
 // sort the data array;
 }
}

523CS 538 Spring 2002
©

class Test {
 public static void
 main(String args[]){
 DoSort d =
 new DoSort(new int[1000]);
 Thread t1 = new Thread(d);
 t1.start();

 // We can continue while t1
 // does its sort
 }
}

524CS 538 Spring 2002
©

We can start multiple threads, and
the threads can use sleep to delay or
synchronize their execution:
class PingPong
 implements Runnable {
 int delay; String word;
 PingPong(String s,int i){
 delay=i;word=s;};
 public void run(){
 try {
 while(true){

System.out.print(word+" ");
 Thread.sleep(delay);
 }}

catch (InterruptedException e)
 {}
 }

525CS 538 Spring 2002
©

 public static void
 main(String args[]){
 Thread t1 = new Thread(
 new PingPong("ping",33));
 Thread t2 = new Thread(
 new PingPong("PONG",100));
 t1.start();
 t2.start();
 }
}

ping PONG ping ping PONG ping
ping ping PONG ping ping PONG
ping ...

526CS 538 Spring 2002
©

Synchronization in Java
We often want threads to co-operate,
typically in how they access shared
data structures.
Since thread execution is
asynchronous, the details of how
threads interact can be unpredictable.
Consider a method
 update() {

 n = n+1;

 val = f(n);

}

that updates fields of an object.
If two or more threads execute
update concurrently, we might get
unexpected or even illegal behavior.
(Why?)

527CS 538 Spring 2002
©

A Java method may be synchronized,
which guarantees that at most one
thread can execute the method at a
time. Other threads wishing access,
are forced to wait until the currently
executing thread completes.
Thus
void synchronized update() { ... }

can safely be used to update an
object, even if multiple threads are
active.
There is also a synchronized
statement in Java that forces threads
to execute a block of code
sequentially.
synchronized(obj) {

 obj.n = obj.n+1;

 obj.val = f(obj.n);

}

528CS 538 Spring 2002
©

Synchronization Primitives
The following operations are provided
to allow threads to safely interact:
wait() Sleep until awakened
wait(n) Sleep until awakened

or until n milliseconds
pass

notify() Wake up one sleeping
thread

notifyAll() Wake up all sleeping
threads

Using these primitives, correct
concurrent access to a shared data
structure can be programed.

529CS 538 Spring 2002
©

Consider a Buffer class in which
independent threads may try to store
or fetch data objects:

class Buffer {
 private Queue q;
 Buffer() { q = new Queue(); }
 public synchronized void
 put(Object obj) {
 q.enqueue(obj);
 notify(); //Why is this needed?
 }
 public synchronized Object
 get() {
 while (q.isEmpty()) {

//Why a while loop?
 wait();
 }
 return q.dequeue();
 }
}

530CS 538 Spring 2002
©

Locks, Semaphores and
Monitors

Java’s synchronization mechanisms
are based upon the notion of a lock. A
lock is a special value that can be
held by at most one thread.
If a thread holds a lock, it has
permission to do some “critical”
operation like writing a shared
variable or restructuring a shared
data object.
If a thread wants to do an operation
but doesn’t hold the necessary lock, it
must wait until it gets the lock.
In Java there is a lock associated with
each run-time object.

531CS 538 Spring 2002
©

Lock Granularity and Access
Though each Java object has a lock,
you often don’t want to lock and
unlock each object you access.
If you are manipulating a large data
structure (like a tree or hash table),
acquiring the lock for each object in
the tree or table can be costly and
error-prone.
Instead, it is common to create a lock
corresponding to a group of objects.
Hence holding the lock to the root of
a tree may give you permission to
access the whole tree.
There is a danger though—if all or
most of a large structure is held by
one thread, then other threads won’t
be able to access that structure
concurrently.

532CS 538 Spring 2002
©

For example, a large shared data base
(like one used to record current
bookings for an airline) shouldn’t be
held exclusively by one thread—
hundreds of concurrent threads may
want to access it at any time. An
intermediate lock, like all reservations
for a single fight, is more reasonable.
There is also an issue of how long you
hold a lock. The ideal is to have
exclusive access for as short a period
as is necessary. Work that is not
subject to interference by other
threads (like computations using local
variables) should be done before a
lock is obtained. Hence Java’s
synchronized statement allows a
method to get exclusive access to an
object for a limited region, enhancing
shared access.

533CS 538 Spring 2002
©

Deadlock
A variety of programming problems
appear in concurrent programs that
don’t exist in ordinary sequential
programs.
The most serious of these is deadlock:
Two or more threads hold locks that
other threads require. Each waits for
the other thread to release a needed
lock, and no thread is able to execute.
As an example of how deadlock may
occur, consider two threads, t1 and
t2 . Each requires two files, a master
file and a log file. Since these files are
shared, each has a lock.
Assume t1 gets the lock for the
master file while t2 (at the same
instant) gets the lock for the log file.

534CS 538 Spring 2002
©

Now each is stuck. Each has one file,
and will wait forever for the other file
to be released.
In Java deadlock avoidance is wholly
up to the programmer. There are no
language-level guarantees that
deadlock can’t happen.
Some languages have experimented
with ways to help programmers avoid
deadlock:
• If all locks must be claimed at once,

deadlock can be avoided. You either
get all of them or none, but you can’t
block other threads while making no
progress yourself.

• Locks (and the resources they
control) can be ordered, with the rule
that you must acquire locks in the

535CS 538 Spring 2002
©

proper order. Now two threads can’t
each hold locks the other needs.

• The language can require that the
largest set of locks ever needed be
declared in advance. When locks are
requested, the operating system can
track what’s claimed and what may
be needed, and refuse to honor
unsafe requests.

536CS 538 Spring 2002
©

Fairness & Starvation
When one thread has a lock, other
threads who want the lock will be
suspended until the lock is released.
It can happen that a waiting thread
may be forced to wait indefinitely to
acquire a lock, due to an unfair
waiting policy. A waiting thread that
never gets a lock it needs due to
unfair lock allocation faces starvation.
As an example, if we place waiting
threads on a stack, newly arrived
threads will get access to a lock
before earlier arrivals. This can lead to
starvation. Most thread managers try
to be fair and guarantee that all
waiting threads have a fair chance to
acquire a lock.

537CS 538 Spring 2002
©

How are Locks Implemented?
Internally, Java needs operations to
acquire a lock and release a lock.
These operations can be implemented
using the notion of a semaphore.
A semaphore is an integer value
(often just a single bit) with two
atomic operations: up and down.
up(s) increments s atomically.
down(s) decrements s atomically.
But if s is already zero, the process
doing the down operation is put in a
wait state until s becomes positive
(eventually some other process should
do an up operation).
Now locks are easy to implement.
You do a down(lock) to claim a lock.
If someone else has it, you are forced

538CS 538 Spring 2002
©

to wait until the lock is released. If
the lock value is > 0 you get it and all
others are “locked out.”
When you want to release a lock, you
do up(lock) , which makes lock
non-zero and eligible for another
thread to claim.
In fact, since only one thread will ever
have a lock, the lock value needs to
be only one bit, with 1 meaning
currently free and unlocked and 0
meaning currently claimed and
locked.

539CS 538 Spring 2002
©

Monitors
Direct manipulation of semaphores is
tedious and error-prone. If you
acquire a lock but forget to release it,
threads may be blocked forever.
Depending on where down and up
operations are placed, it may be
difficult to understand how
synchronization is being performed.
Few modern languages allow direct
use of semaphores. Instead,
semaphores are used in the
implementation of higher-level
constructs like monitors.
A monitor is a language construct
that guarantees that a block of code
will be executed synchronously (one
thread at a time).

540CS 538 Spring 2002
©

The Java synchronized statement is
a form of monitor.
When
synchronized(obj) { ... }

is executed, “invisible” getLock and
freeLock operations are added:
synchronized(obj) {
 getLock(obj)

 ...

 freeLock(obj);

}

This allows the body of the
synchronized statement to execute
only when it has the lock for obj .
Thus two different threads can never
simultaneously execute the body of a
synchronized statement because
two threads can’t simultaneously hold
obj ’s lock.

541CS 538 Spring 2002
©

In fact, synchronized methods are
really just methods whose bodies are
enclosed in an invisible
synchronized statement.
If we execute
 obj.method()

where method is synchronized,
method ’s body is executed as if it
were of the form
synchronized(obj) {

 body of method

}

Operations like sleep , wait , notify
and notifyAll also implicitly cause
threads to release locks, allowing
other threads to proceed.

542CS 538 Spring 2002
©

Pizza
Pizza is an extension to Java developed
in the late 90s by Odersky and Wadler.
Pizza shows that many of the best ideas
of functional languages can be
incorporated into a “mainstream”
language, giving it added power and
expressability.
Pizza adds to Java:
1. Parametric Polymorphism

Classes can be parameterized with
types, allowing the creation of
“custom” data types with full
compile-time type checking.

2. First-class Functions
Functions can be passed, returned and
stored just like other types.

543CS 538 Spring 2002
©

3. Patterns and Value Constructors
Classes can be subdivided into a
number of value constructors, and
patterns can be used to structure the
definition of methods.

544CS 538 Spring 2002
©

Parametric Polymorphism
Java allows a form of polymorphism
by defining container classes (lists,
stacks, queues, etc.) in terms of values
of type Object .
For example, to implement a linked
list we might use:
class LinkedList {
 Object value;
 LinkedList next;
 Object head() {return value;}

LinkedList tail(){return next;}
 LinkedList(Object O) {
 value = O; next = null;}
 LinkedList(Object O,
 LinkedList L){
 value = O; next = L;}
}

545CS 538 Spring 2002
©

We use class Object because any
object can be assigned to Object (all
classes must be a subclass of
Object).
Using this class, we can create a
linked list of any subtype of Object .
But,
• We can’t guarantee that linked lists

are type homogeneous (contain only a
single type).

• We must cast Object types back into
their “real” types when we extract list
values.

• We must use wrapper classes like
Integer rather than int (because
primitive types like int aren’t
objects, and aren’t subclass of
Object).

546CS 538 Spring 2002
©

For example, to use LinkedList to
build a linked list of int s we do the
following:

LinkedList L =
 new LinkedList(new Integer(123));

 int i =
 ((Integer) L.head()).intValue();

This is pretty clumsy code. We’d
prefer a mechanism that allows us to
create a “custom version” of
LinkedList , based on the type we
want the list to contain.
We can’t just call something like

LinkedList(int) or
LinkedList(Integer) because

types can’t be passed as parameters.
Parametric polymorphism is the
solution. Using this mechanism, we
can use type parameters to build a

547CS 538 Spring 2002
©

“custom version” of a class from a
general purpose class.
C++ allows this using its template
mechanism. Pizza also allows type
parameters.
In both languages, type parameters
are enclosed in “angle brackets” (e.g.,
LinkedList<T> passes T, a type, to
the LinkedList class).
In Pizza we have
class LinkedList<T> {
 T value; LinkedList<T> next;
 T head() {return value;}
 LinkedList<T> tail() {
 return next;}
 LinkedList(T O) {
 value = O; next = null;}
 LinkedList(T O,LinkedList<T> L)
 {value = O; next = L;}
}

548CS 538 Spring 2002
©

When linked list objects are created
(using new) no type qualifiers are
needed—the type of the constructor’s
parameters are used. We can create
LinkedList<int> L1 =
 new LinkedList(123);

int i = L1.head();

LinkedList<String> L2 =
 new LinkedList("abc");

String s = L2.head();

LinkedList<LinkedList<int> > L3 =
 new LinkedList(L1);

int j = L3.head().head();

549CS 538 Spring 2002
©

Bounded Polymorphism
In Pizza we can use interfaces to
bound the type parameters a class
will accept.
Recall our Compare interface:
interface Compare {

 boolean lessThan(Object o1,
 Object o2);

}

We can specify that a parameterized
class will only takes types that
implement Compare:
class LinkedList<T implements

Compare> { ... }

550CS 538 Spring 2002
©

In fact, we can improve upon how
interfaces are defined and used.
Recall that in method lessThan we
had to use parameters declared as
type Object to be general enough to
match (and accept) any object type.
This leads to clumsy casting (with
run-time correctness checks) when
lessThan is implemented for a
particular type:
class IntCompare implements Compare {
 public boolean lessThan(Object i1,
 Object i2){
 return ((Integer) i1).intValue() <
 ((Integer)i2).intValue();}
}

551CS 538 Spring 2002
©

Pizza allows us to parameterize class
definitions with type parameters, so
why not do the same for interfaces?
In fact, this is just what Pizza does.
We can now define Compare as
interface Compare<T> {
 boolean lessThan(T o1, T o2);
}

Now we define class LinkedList as
class LinkedList<T implements

Compare<T> > { ... }

Given this form of interface
definition, no casting (from type
Object) is needed in classes that
implement Compare:
class IntCompare implements

Compare<Integer> {
 public boolean lessThan(Integer i1,

Integer i2){
 return i1.intValue() <
 i2.intValue();}
}

552CS 538 Spring 2002
©

First-class Functions in Pizza
In Java, functions are treated as
constants that may appear only in
classes.
To pass a function as a parameter, you
must pass a class that contains that
function as a member. For example,
class Fct {
 int f(int i) { return i+1; }
}
class Test {

static int call(Fct g, int arg)
 { return g.f(arg); }
}

553CS 538 Spring 2002
©

Changing the value of a function is
even nastier. Since you can’t assign to
a member function, you have to use
subclassing to override an existing
definition:
class Fct2 extends Fct {
 int f(int i) { return i+111; }
}

Computing new functions during
executions is nastier still, as Java
doesn’t have any notion of a lambda-
term (that builds a new function).

554CS 538 Spring 2002
©

Pizza makes functions first-class, as
in ML. You can have function
parameters, variables and return
values. You can also define new
functions within a method.
The notation used to define the type
of a function value is
(T 1,T 2, ...)->T 0

This says the function will take the
list (T 1,T 2, ...) as it arguments
and will return T0 as its result.
Thus

(int)->int

represents the type of a method like
int plus1(int i) {return i+1;}

555CS 538 Spring 2002
©

The notation used by Java for fixed
functions still works. Thus
static int f(int i){return 2*i;};

denotes a function constant, f .
The definition
 static (int)->int g = f;

defines a field of type (int)->int
named g that is initialized to the
value of f .
The definition
static int call((int)->int f,
 int i)
 {return f(i);};

defines a constant function that takes
as parameters a function value of
type (int)->int and an int value.
It calls the function parameter with
the int parameter and returns the
value the function computes.

556CS 538 Spring 2002
©

Pizza also has a notation for
anonymous functions (function
literals), similar to fn in ML and
lambda in Scheme. The notation
fun (T 1 a 1, T 2 a 2, ...) -> T 0
 {Body}

defines a nameless function with
arguments declared as (T 1 a1, T 2 a2,

...) and a result type of T0. The
function’s body is computed by
executing the block {Body} .
For example,
static (int)->int compose(

 (int)->int f, (int)->int g){
 return fun (int i) -> int
 {return f(g(i));};

}

defines a method named compose . It
takes as parameters two functions, f
and g, each of type (int)->int .

557CS 538 Spring 2002
©

The function returns a function as its
result. The type of the result is
(int)->int and its value is the
composition of functions f and g:
 return f(g(i));

Thus we can now have a call like
compose(f1,f2)(100)

which computes f1(f2(100)) .

558CS 538 Spring 2002
©

With function parameters, some
familiar functions can be readily
programmed:
class Map {
 static int[] map((int)->int f,
 int[] a){
 int [] ans =
 new int[a.length];
 for (int i=0;i<a.length;i++)
 ans[i]=f(a[i]);
 return ans;
 };
}

559CS 538 Spring 2002
©

And we can make such operations
polymorphic by using parametric
polymorphism:
class Map<T> {
 private static T dummy;
 Map(T val) {dummy=val;};
 static T[] map((T)->T f,

T[] a){
 T [] ans = (T[]) a.clone();

for (int i=0;i<a.length;i++)
 ans[i]=f(a[i]);
 return ans;
 };
}

560CS 538 Spring 2002
©

Algebraic Data Types
Pizza also provides “algebraic data
types” which allow a type to be
defined as a number of cases. This is
essentially the pattern-oriented
approach we saw in ML.
A list is a good example of the utility
of algebraic data types. Lists come in
two forms, null and non-null, and we
must constantly ask which form of
list we currently have. With patterns,
the need to consider both forms is
enforced, leading to a more reliable
programming style.
In Pizza, patterns are modeled as
“cases” and grafted onto the existing
switch statement (this formulation is
a bit clumsy):

561CS 538 Spring 2002
©

class List {
 case Nil;
 case Cons(char head,
 List tail);
 int length(){
 switch(this){
 case Nil: return 0;
 case Cons(char x, List t):
 return 1 + t.length();
 }
 }
}

562CS 538 Spring 2002
©

And guess what! We can use
parametric polymorphism along with
algebraic data types:
class List<T> {
 case Nil;
 case Cons(T head,
 List<T> tail);
 int length(){
 switch(this){
 case Nil: return 0;
 case Cons(T x, List<T> t):
 return 1 + t.length();
 }
 }
}

563CS 538 Spring 2002
©

Enumerations as Algebraic
Data Types

We can use algebraic data types to
obtain a construct missing from Java
and Pizza—enumerations.
We simply define an algebraic data
type whose constructors are not
parameterized:
class Color {
 case Red;
 case Blue;
 case Green;
 String toString() {
 switch(this) {
 case Red: return "red";
 case Blue: return "blue";
 case Green: return "green";
 }
 }
}

564CS 538 Spring 2002
©

This approach is better than simply
defining enumeration values as
constant (final) integers:

final int Red = 1;

final int Blue = 2;

final int Green = 3;

With the algebraic data type
approach, Red, Blue and Green , are
not integers. They are constructors
for the type Color . This leads to more
thorough type checking.

565CS 538 Spring 2002
©

GJ—Generic Java
The Pizza project has lead to the
development of GJ (Generic Java) an
extension to Java that explicitly
supports generics (type parameters)
using parametric polymorphism.
The goals of GJ are
• Direct support for generics. Many

Java data types are generic over some
data type; this is especially common
for reusable libraries such as
collection classes.
GJ supports the use of such types, for
instance allowing one to write the GJ
type Vector<String> as opposed to
the Java type Vector . With GJ, fewer
casts are required, and the compiler
catches more errors.

566CS 538 Spring 2002
©

• GJ is a superset of the Java
programming language. Every Java
source program is still legal in GJ and
retains the same meaning in GJ.

• The GJ compiler can be used as a Java
compiler.

• GJ compiles into JVM (Java Virtual
Machine) code, so GJ programs run
on any Java platform, including Java
compliant browsers.

• Class files produced by the GJ
compiler can be freely mixed with
those produced by other Java
compilers.

• GJ is compatible with existing
libraries. One can call any Java library
function from GJ, and any GJ library
function from Java. Further, where it

567CS 538 Spring 2002
©

is sensible, one can assign GJ types
(with type parameters) to existing
Java libraries. For instance, the GJ
type Vector<String> is
implemented by the existing Java
library type Vector .

• GJ supports efficient translation. GJ
is translated by erasure: no
information about type parameters is
maintained at run-time. This means
GJ code is pretty much identical to
Java code for the same purpose, and
equally efficient.

• The GJ system is freely available and
fully documented. The GJ compiler is
itself written in GJ, so it runs on any
platform that supports Java. The GJ
compiler is available for download,

568CS 538 Spring 2002
©

and there is extensive
documentation.

• GJ has been proposed (by Sun
Microsystems) as the basis for the
implementation of generics (type
parameters) in the next major
revision of Java.

569CS 538 Spring 2002
©

Reading Assignment
• Python Tutorial

(linked from class web page)

570CS 538 Spring 2002
©

Scripting Languages
The languages we’ve seen so far are
“complete” programming languages.
They are designed to encode a
complete program, perhaps with the
assistance of library routines.
However, throughout the history of
programming another sort of
programming language has evolved
(and flourished)—the scripting
language.
Scripting languages evolved as simple
tools to “glue” together existing
programs and utilities.
When batch programming (rather
than interactive programming) was
dominant, command languages
evolved to program the steps
necessary to run a program.

571CS 538 Spring 2002
©

JCL
One of the most widely used
command languages was IBM’s JCL
(Job Control Language). It was
designed to “program” a batch
operating system. It directed the steps
required to put together a program
and run it. A JCL program
 1. Identified your job to the system.
 2. Directed the execution of the

program(s).
 3. Described the devices (readers,

printers, etc.) and data needed by
 the program(s).
The following example demonstrates
the JCL necessary to run an assembler
language program. The job’s name is

572CS 538 Spring 2002
©

MYPROG, and it belongs to Clem
Kaddiddlehopper who wants to have
the output returned to room 222.

//MYPROG JOB, ’CLEM
KADDIDDLEHOPPER’,TIME=(0,5)

/*JOBPARM ROOM=222
//STEP1 EXEC ASMHCG
//ASM.SYSIN DD *
[assembler source deck]
/*
//GO.DATA DD *
[data deck]
/*

573CS 538 Spring 2002
©

Shell Scripts
By today’s standards JCL is crude
indeed, but it did establish the notion
of a specialized programming
language used to “program” the steps
of an operating system. These ideas
evolved into the far more powerful
shell scripts used by systems like Unix.
Many utility programs provided by
Unix (and other operating systems)
are not conventional programs
compiled from C or C++. Instead, they
are small shell scripts that tie
together existing programs into new
and useful forms.

574CS 538 Spring 2002
©

Here is a typical Unix shell script:
wl - run word count,
then print (lpr) a set of files

#
Usage: wl file1 [file2] ...
set T=/tmp/wl.$$ # temporary file
wc -l $* > $T # get line counts
lpr $T $* # print line counts,
then files
rm $T # remove temporary file

Shell scripts are useful because they
are more direct and concise than
ordinary C or C++ programs.
Experienced Unix programmers prefer
to build a new utility from existing
ones rather than from scratch. It’s
much easier, faster, and far less error
prone. Other scripting languages, like
Python, can be used in shell scripts.

575CS 538 Spring 2002
©

JavaScript and VBScript
In the HTML that implements web
pages it is often necessary to perform
simple computations. You could, of
course, write a Java applet, and call it,
but this may be overkill.
Instead, you can use a simple
scripting language that is directly
executable by a web browser. Two
major web-oriented scripting
languages are JavaScript (by Sun
Microsystems) and VBScript (by
Microsoft).
JavaScript is not full Java; it is a
distinct scripting language based
(loosely) on Java. Similarly, VBScript
isn’t full Visual Basic, its a language
based on it.

576CS 538 Spring 2002
©

Let’s look at a simple JavaScript script
that counts the Wednesdays in a
month (if that’s of interest to you!)
<SCRIPT LANGUAGE="JavaScript">
<!-- Begin
var now = new Date();
var month = now.getMonth();
var date = now.getDate();
var day = now.getDay();
var year = now.getYear();
m = new Array("January","February",
"March","April","May","June","July",
"August","September","October",
"November","Decemeber");
d = new Array("Sunday","Monday",
"Tuesday","Wednesday","Thursday",
"Friday","Saturday");
if (year < 2000) year = year + 1900;
//End of Month Calculations
var monarr = new Array(31, 28, 31,
30, 31, 30, 31, 31, 30, 31, 30, 31);
// check for leap year
if (((year % 4 == 0) && (year % 100
!= 0)) || (year % 400 == 0))
monarr[1] = "29";

577CS 538 Spring 2002
©

//Finds the First Day for this Month
while (date != 1){
date = date - 1;
day = day - 1;
if (day < 0) day = day + 7;
}
//Count # of Wed in this month
weekday = 0;
while (date != monarr[month]){
date = date + 1;
day = day + 1;
if (day > 6)
day = 7 - day;
if (d[day] == "Wednesday")
weekday = weekday + 1;
}
//Fix For Months beginning on a Wed
if (d[day] == "Wednesday") weekday =
weekday + 1;
document.write (m[month] +
" contain s " + weekda y + " " + d[3] +
"s");// End -->
</script>

578CS 538 Spring 2002
©

Like most scripting languages, in
JavaScript there are no variable type
declarations; types are dynamic.
Control structures and expressions
look like those found in Java. Though
not shown, functions are included.
The idea is to make it easy to add a
bit of computation, while retaining
most of the concepts and notation of
conventional programming
languages.

579CS 538 Spring 2002
©

Python
One of the newest and most
innovative scripting languages is
Python, developed by Guido van
Rossum in the mid-90s. Python is
named after the BBC “Monty Python”
television series.
Python blends the expressive power
and flexibility of earlier scripting
languages with the power of object-
oriented programming languages.
It offers a lot to programmers:
• An interactive development mode as

well as an executable “batch” mode
for completed programs.

• Very reasonable execution speed. Like
Java, Python programs are compiled.
Also like Java, the compiled code is in

580CS 538 Spring 2002
©

an intermediate language for which
an interpreter is written. Like Java
this insulates Python from many of
the vagaries of the actual machines
on which it runs, giving it portability
of an equivalent level to that of Java.
Unlike Java, Python retains the
interactivity for which interpreters
are highly prized.

• Python programs require no
compilation or linking. Nevertheless,
the semi-compiled Python program
still runs much faster than its
traditionally interpreted rivals such as
the shells, awk and perl.

• Python is freely available on almost
all platforms and operating systems
(Unix, Linux, Windows, MacOs, etc.)

581CS 538 Spring 2002
©

• Python is completely object oriented.
It comes with a full set of objected
oriented features.

• Python presents a first class object
model with first class functions and
multiple inheritance. Also included
are classes, modules, exceptions and
late (run-time) binding.

• Python allows a clean and open
program layout. Python code is less
cluttered with the syntactic “noise”
of declarations and scope definitions.
Scope in a Python program is defined
by the indentation of the code in
question. Python thus breaks with
current language designs in that
white space has now once again
acquired significance.

582CS 538 Spring 2002
©

• Like Java, Python offers automated
memory management through run-
time reference counting and garbage
collection of unreferenced objects.

• Python can be embedded in other
products and programs as a control
language.

• Python’s interface is well exposed and
is reasonably small and simple.

• Python’s license is truly public.
Python programs can be used or sold
without copyright restrictions.

• Python is extendable. You can
dynamically load compiled Python,
Python source, or even dynamically
load new machine (object) code to
provide new features and new
facilities.

583CS 538 Spring 2002
©

• Python allows low-level access to its
interpreter. It exposes its internal
plumbing to a significant degree to
allow programs to make use of the
way the plumbing works.

• Python has a rich set of external
library services available. This
includes, network services, a GUI API
(based on tcl/Tk), Web support for
the generation of HTML and the CGI
interfaces, direct access to databases,
etc.

584CS 538 Spring 2002
©

Using Python
Python may be used in either
interactive or batch mode.
In interactive mode you start up the
Python interpreter and enter
executable statements. Just naming a
variable (a trivial expression)
evaluates it and echoes its value.
For example (>>> is the Python
interactive prompt):
>>> 1
1

>>> a=1

>>> a
1

>>> b=2.5

>>> b
2.5

585CS 538 Spring 2002
©

>>> a+b
3.5

>>> print a+b
3.5

You can also incorporate Python
statements into a file and execute
them in batch mode. One way to do
this is to enter the command
python file.py

where file.py contains the Python
code you want executed. Be careful
though; in batch mode you must use
a print (or some other output
statement) to force output to be
printed. Thus
1

a=1

a

586CS 538 Spring 2002
©

b=2.5

b

a+b

print a+b

when run in batch mode prints only
3.5 (the output of the print
statement).
You can also run Python programs as
Unix shell scripts by adding the line
#! /usr/bin/env python
to the head of your Python file.
(Since # begins Python comments,
you can also feed the same
augmented file directly to the Python
interpreter)

587CS 538 Spring 2002
©

Python Command Format
In Python, individual primitive
commands and expressions must
appear on a single line.
This means that
 a = 1

 +b

does not assign 1+b to a! Rather, it
assigns 1 to a, then evaluates +b.
If you wish to span more than one
line, you must use \ to escape the
line:
a = 1 \

 +b

is equivalent to
a = 1 +b

588CS 538 Spring 2002
©

Compound statements, like if
statements and while loops, can span
multiple lines, but individual
statements within an if or while (if
they are primitive) must appear one a
single line.

Why this restriction?
With it, ; ’s are mostly unnecessary!
A ; at the end of a statement is legal
but usually unnecessary, as the end-
of-line forces the statement to end.
You can use a ; to squeeze more than
one statement onto a line, if you
wish:
a=1; b=2 ; c=3

589CS 538 Spring 2002
©

Identifiers and Reserved Words
Identifiers look much the same as in
most programming languages. They
are composed of letters, digits and
underscores. Identifiers must begin
with a letter or underscore. Case is
significant. As in C and C++,
identifiers that begin with an
underscore often have special
meaning.

Python contains a fairly typical set of
reserved words:
and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass
def finally in print

590CS 538 Spring 2002
©

Numeric Types
There are four numeric types:
1. Integers, represented as a 32 bit (or

longer) quantity. Digits sequences
(possibly) signed are integer literals:
1 -123 +456

2. Long integers, of unlimited precision.
An integer literal followed by an l or
L is a long integer literal:
12345678900000000000000L

3. Floating point values, represented as a
64 bit floating point number. Literals
are of fixed decimal or exponential
form:
123.456 1e10 6.0231023

4. Complex numbers, represented as a
pair of floating point numbers. In
complex literals j or J is used to

591CS 538 Spring 2002
©

denote the imaginary part of the
complex value:

1.0+2.0j -22.1j 10e10J+20.0

There is no character type. A literal
like 'a' or "c" denotes a string of
length one.

There is no boolean type. A zero
numeric value (any form), or None
(the equivalent of void) or an empty
string, list, tuple or dictionary is
treated as false; other values are
treated as true.
Hence
 "abc" and "def"

is treated as true in an if , since both
strings are non-empty.

592CS 538 Spring 2002
©

Arithmetic Operators
Op Description
** Exponentiation
- Unary plus
+ Unary minus
~ Bit-wise complement

 (int or long only)
* Multiplication
/ Division
% Remainder
- Binary plus
+ Binary minus
<< Bit-wise left shift (int or long only)
>> Bit-wise right shift (int or long only)
& Bit-wise and (int or long only)
| Bit-wise or (int or long only)
^ Bit-wise Xor (int or long only)
< Less than
> Greater than

593CS 538 Spring 2002
©

>= Greater than or equal
<= Less than or equal
== Equal
!= Not equal
and Boolean and
or Boolean or
not Boolean not

594CS 538 Spring 2002
©

Operator Precedence Levels
Listed from lowest to highest:
or Boolean OR
and Boolean AND
not Boolean NOT
<, <=, >, >=, <>, !=, == Comparisons
| Bitwise OR
^ Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and subtraction
*, /, % Multiplication, division,

remainder
** Exponentiation
+, - Positive, negative (unary)
~ Bitwise not

595CS 538 Spring 2002
©

Arithmetic Operator Use
Arithmetic operators may be used
with any arithmetic type, with
conversions automatically applied.
Bit-wise operations are restricted to
integers and long integers. The result
type is determined by the “generality”
of the operands. (Long is more
general than int, float is more general
than both int and long, complex is
the most general numeric type). Thus
>>> 1+2
3

>>> 1+111L
112L

>>> 1+1.1
2.1

>>> 1+2.0j
(1+2j)

596CS 538 Spring 2002
©

Unlike almost all other programming
languages, relational operators may
be “chained” (as in standard
mathematics).
Therefore
 a > b > c

means (a > b) and (b > c)

597CS 538 Spring 2002
©

Assignment Statements
In Python assignment is a statement
not an expression.
Thus
 a+(b=2)

is illegal.
Chained assignments are allowed:
a = b = 3

Since Python is dynamically typed,
the type (and value) associated with
an identifier can change because of
an assignment:
>>> a = 0

>>> print a
0

>>> a = a + 0L

>>> print a

598CS 538 Spring 2002
©

0L

>>> a = a + 0.0

>>> print a
0.0

>>> a = a + 0.0J

>>> print a
0j

599CS 538 Spring 2002
©

If and While Statements
Python contains if and while
statements that are fairly similar to
those found in C and Java.
There are some significant differences
though.
A line that contains an if , else or
while ends in a “: ”. Thus we might
write:
 if a > 0:

 b = 1

Moreover the indentation of the then
part is significant! You don’t need {
and } in Python because all
statements indented at the same level
are assumed to be part of the same
block.

600CS 538 Spring 2002
©

In the following Python statements
if a>0:

 b=1

 c=2

d=3

the assignments to b and c constitute
then part; the assignment to d
follows the if statement, and is
independent of it. In interactive mode
a blank line is needed to allow the
interpreter to determine where the if
statement ends; this blank line is not
needed in batch mode.

601CS 538 Spring 2002
©

The if Statement
The full form of the if statement is
if expression:

 statement(s)

elif expression:

 statement(s)

...

else:

 statement(s)

Note those pesky : ’s at the end of the
if , elif and else lines. The
expressions following the if and
optional elif lines are evaluated
until one evaluates to true. Then the
following statement(s), delimited by
indentation, are executed. If no
expression evaluates to true, the
statements following the else are
executed.

602CS 538 Spring 2002
©

Use of else and elif are optional; a
“bare” if may be used.
If any of the lists of statements is to
be null, use pass to indicate that
nothing is to be done.
For example
if a>0:

 b=1

elif a < 0:

 pass

else

 b=0

This if sets b to 1 if a is > 0; it sets b
to 0 if a == 0 , and does nothing if a <
0.

603CS 538 Spring 2002
©

While Loops
Python contains a fairly conventional
while loop:

while expression:

 body

Note the “: ” that ends the header
line. Also, indentation delimits the
body of the loop; no braces are
needed. For example,
>>> a=0; b=0

>>> while a < 5:

... b = b+a**2

... a= a+1

...

>>> print a,b
5 30

604CS 538 Spring 2002
©

Break, Continue and Else in
Loops

Like C, C++ and Java, Python allows
use of break within a loop to force
loop termination. For example,
>>> a=1

>>> while a < 10:

... if a+a == a**2:

... break

... else:

... a=a+1

...

>>> print a
2

605CS 538 Spring 2002
©

A continue may be used to force the
next loop iteration:
>>> a=1

>>> while a < 100:

... a=a+1

... if a%2==0:

... continue

... a=3*a

...

>>> print a
105

606CS 538 Spring 2002
©

Python also allows you to add an
else clause to a while (or for) loop.
The syntax is
while expression:

 body

else:

 statement(s)

The else statements are executed
when the termination condition
becomes false, but not when the loop
is terminated with a break . As a
result, you can readily program
“search loops” that need to handle
the special case of search failure:

607CS 538 Spring 2002
©

>>> a=1

>>> while a < 1000:

... if a**2 == 3*a-1:

... print "winner: ",a

... break

... a=a+1

... else:

... print "No match"

...

No match

608CS 538 Spring 2002
©

Sequence Types
Python includes three sequence types:
strings, tuples and lists. All sequence
types may be indexed, using a very
general indexing system.
Strings are sequences of characters;
tuples and lists may contain any type
or combination of types (like Scheme
lists).
Strings and tuples are immutable
(their components may not be
changed). Lists are mutable, and be
updated, much like arrays.
Strings may be delimited by either a
single quote (') or a double quote (")
or even a triple quote (''' or """). A
given string must start and stop with
the same delimiter. Triply quoted
strings may span multiple lines. There

609CS 538 Spring 2002
©

is no character type or value;
characters are simply strings of
length 1. Legal strings include
'abc' "xyz" '''It's OK!'''

Lists are delimited by “[“ and “] ”.
Empty (or null lists) are allowed. Valid
list literals include
 [1,2,3] ["one",1]
 [['a'],['b'],['c']] []

Tuples are a sequence of values
separated by commas. A tuple may be
enclosed within parentheses, but this
isn’t required. A empty tuple is () . A
singleton tuple ends with a comma
(to distinguish it from a simple scalar
value).
Thus (1,) or just 1, is a valid tuple
of length one.

610CS 538 Spring 2002
©

Indexing Sequence Types
Python provides a very general and
powerful indexing mechanism. An
index is enclosed in brackets, just like
a subscript in C or Java. Indexing
starts at 0.
Thus we may have
>>> 'abcde'[2]
'c'

>>> [1,2,3,4,5][1]
2

>>> (1.1,2.2,3.3)[0]
1.1

Using an index that’s too big raises an
IndexError exception:
>>> 'abc'[3]
IndexError: string index out of
range

611CS 538 Spring 2002
©

Unlike most languages, you can use
negative index values; these simply
index from the right:
>>> 'abc'[-1]
'c'

>>> [5,4,3,2,1][-2]
2

>>> (1,2,3,4)[-4]
1

You may also access a slice of a
sequence value by supplying a range
of index values. The notation is

data[i:j]

which selects the values in data that
are >=i and < j . Thus
>>> 'abcde'[1:2]
'b'

>>> 'abcde'[0:3]
'abc'

612CS 538 Spring 2002
©

>>> 'abcde'[2:2]
''

You may omit a lower or upper bound
on a range. A missing lower bound
defaults to 0 and a missing upper
bound defaults to the maximum legal
index. For example,
>>> [1,2,3,4,5][2:]
[3, 4, 5]

>>> [1,2,3,4,5][:3]
[1, 2, 3]

An upper bound that’s too large in a
range is interpreted as the maximum
legal index:
>>> 'abcdef'[3:100]
'def'

You may use negative values in
ranges too—they’re interpreted as
being relative to the right end of the
sequence:

613CS 538 Spring 2002
©

>>> 'abcde'[0:-2]
'abc'

>>> 'abcdefg'[-5:-2]
'cde'

>>> 'abcde'[-3:]
'cde'

>>> 'abcde'[:-1]
'abcd'

Since arrays may be assigned to, you
may assign a slice to change several
values at once:
>>> a=[1,2,3,4]

>>> a[0:2]=[-1,-2]

>>> a
[-1, -2, 3, 4]

>>> a[2:]=[33,44]

>>> a
[-1, -2, 33, 44]

614CS 538 Spring 2002
©

The length of the value assigned to a
slice need not be the same size as the
slice itself, so you can shrink or
expand a list by assigning slices:
>>> a=[1,2,3,4,5]

>>> a[2:3]=[3.1,3.2]

>>> a
[1, 2, 3.1, 3.2, 4, 5]

>>> a[4:]=[]

>>> a
[1, 2, 3.1, 3.2]

>>> a[:0]=[-3,-2,-1]

>>> a
[-3, -2, -1, 1, 2, 3.1, 3.2]

615CS 538 Spring 2002
©

Other Operations on
Sequences

Besides indexing and slicing, a
number of other useful operations are
provided for sequence types (strings,
lists and tuples).
These include:

+ (catenation):
>>> [1,2,3]+[4,5,6]
[1, 2, 3, 4, 5, 6]

>>> (1,2,3)+(4,5)
(1, 2, 3, 4, 5)

>>> (1,2,3)+[4,5]
TypeError: illegal argument
type for built-in operation

>>> "abc"+"def"
'abcdef'

616CS 538 Spring 2002
©

• * (Repetition):
>>> 'abc'*2
'abcabc'

>>> [3,4,5]*3
[3, 4, 5, 3, 4, 5, 3, 4, 5]

• Membership (in , not in)
>>> 3 in [1,2,3,4]
1

>>> 'c' in 'abcde'
1

• max and min :
>>> max([3,8,-9,22,4])
22

>>> min('aa','bb','abc')
'aa'

617CS 538 Spring 2002
©

Operations on Lists
As well as the operations available for
all sequence types (including lists),
there are many other useful
operations available for lists. These
include:
• count (Count occurrences of an item

in a list):
>>> [1,2,3,3,21].count(3)
2

• index (Find first occurrence of an
item in a list):

>>> [1,2,3,3,21].index(3)
2

>>> [1,2,3,3,21].index(17)
ValueError: list.index(x): x
not in list

618CS 538 Spring 2002
©

• remove (Find and remove an item
from a list):

>>> a=[1,2,3,4,5]
>>> a.remove(4)
>>> a
[1, 2, 3, 5]

>>> a.remove(17)
ValueError: list.remove(x): x
not in list

• pop (Fetch and remove i-th element
of a list):

>>> a=[1,2,3,4,5]
>>> a.pop(3)
4

>>> a
[1, 2, 3, 5]

>>> a.pop()
5

>>> a
[1, 2, 3]

619CS 538 Spring 2002
©

• reverse a list:
>>> a=[1,2,3,4,5]
>>> a.reverse()
>>> a
[5, 4, 3, 2, 1]

• sort a list:
>>> a=[5,1,4,2,3]
>>> a.sort()
>>> a
[1, 2, 3, 4, 5]

• Create a range of values:
>>> range(1,5)
[1, 2, 3, 4]

>>> range(1,10,2)
[1, 3, 5, 7, 9]

620CS 538 Spring 2002
©

Dictionaries
Python also provides a dictionary type
(sometimes called an associative
array). In a dictionary you can use a
number (including a float or
complex), string or tuple as an index.
In fact any immutable type can be an
index (this excludes lists and
dictionaries).
An empty dictionary is denoted { } .
A non-empty dictionary may be
written as
{ key 1:value 1, key 2:value 2, ... }

For example,
c={ 'bmw':540, 'lexus':'sc 430',

 'porsche':'boxster'}

621CS 538 Spring 2002
©

You can use a dictionary much like an
array, indexing it using keys, and
updating it by assigning a new value
to a key:
>>> c['bmw']
540

>>> c['bmw']='m5'
>>> c['honda']='accord'

You can delete a value using del :
>>> del c['honda']
>>> c['honda']

KeyError: honda

622CS 538 Spring 2002
©

You can also check to see if a given
key is valid, and also list all keys,
values, or key-value pairs in use:
>>> c.has_key('edsel')
0

>>> c.keys()
['bmw', 'porsche', 'lexus']

>>> c.values()
['m5', 'boxster', 'sc 430']

>>> c.items()
[('bmw', 'm5'), ('porsche',
'boxster'), ('lexus', 'sc 430')]

623CS 538 Spring 2002
©

For Loops
In Python’s for loops, you don’t
explicitly control the steps of an
iteration. Instead, you provide a
sequence type (a string, list or
sequence), and Python automatically
steps through the values.
Like a while loop, you must end the
for loop header with a “: ” and the
body is delimited using indentation.
For example,
>>> for c in 'abc':

... print c

...

a

b

c

624CS 538 Spring 2002
©

The range function, which creates a
list of values in a fixed range is useful
in for loops:
>>> a=[5,2,1,4]

>>> for i in range(0,len(a)):

... a[i]=2*a[i]

...

>>> print a
[10, 4, 2, 8]

625CS 538 Spring 2002
©

You can use an else with for loops
too. Once the values in the specified
sequence are exhausted, the else is
executed unless the for is exited
using a break . For example,
 for i in a:

 if i < 0:

 print 'Neg val:',i

 break

 else:

 print 'No neg vals'

626CS 538 Spring 2002
©

Function Definitions
Function definitions are of the form
def name(args):
 body

The symbol def tells Python that a
function is to be defined. The
function is called name and args is a
tuple defining the names of the
function’s arguments. The body of
the function is delimited using
indentation. For example,
def fact(n):

 if n<=1:

 return 1

 else:

 return n*fact(n-1)

>>> fact(5)
120

>>> fact(20L)

627CS 538 Spring 2002
©

2432902008176640000L

>>> fact(2.5)
3.75

>>> fact(2+1J)
(1+3j)

Scalar parameters are passed by
value; mutable objects are allocated
in the heap and hence are passed (in
effect) by reference:
>>> def asg(ar):

... a[1]=0

... print ar

...

>>> a=[1,2,3,4.5]

>>> asg(a)
[1, 0, 3, 4.5]

628CS 538 Spring 2002
©

Arguments may be given a default
value, making them optional in a call.
Optional parameters must follow
required parameters in definitions.
For example,
 >>> def expo(val,exp=2):

... return val**exp

...

>>> expo(3,3)
27

>>> expo(3)
9

>>> expo()
TypeError: not enough arguments;
expected 1, got 0

629CS 538 Spring 2002
©

A variable number of arguments is
allowed; you prefix the last formal
parameter with a * ; this parameter is
bound to a tuple containing all the
actual parameters provided by the
caller:
>>> def sum(*args):
... sum=0
... for i in args:
... sum=sum+i
... return sum
...

>>> sum(1,2,3)
6

>>> sum(2)
2

>>> sum()
0

630CS 538 Spring 2002
©

You may also use the name of formal
parameters in a call, making the order
of parameters less important:
>>> def cat(left="[",body="",

 right="]"):

... return left+body+right

...

>>> cat(body='xyz');
'[xyz]'

>>> cat(body='hi there!'
 ,left='--[')
'--[hi there!]'

631CS 538 Spring 2002
©

Scoping Rules in Functions
Each function body has its own local
namespace during execution. An
identifier is resolved (if possible) in
the local namespace, then (if
necessary) in the global namespace.
Thus
>>> def f():

... a=11

... return a+b

...

>>> b=2;f()
13

>>> a=22;f()
13

>>> b=33;f()
44

632CS 538 Spring 2002
©

Assignments are to local variables,
even if a global exists. To force an
assignment to refer to a global
identifier, you use the declaration

global id

which tells Python that in this
function id should be considered
global rather than local. For example,
>>> a=1;b=2

>>> def f():

... global a

... a=111;b=222

...

>>> f();print a,b
111 2

633CS 538 Spring 2002
©

Other Operations on Functions
Since Python is interpreted, you can
dynamically create and execute
Python code.
The function eval(string)
interprets string as a Python
expression (in the current execution
environment) and returns what is
computed. For example,
>>> a=1;b=2

>>> eval('a+b')
3

634CS 538 Spring 2002
©

exec(string) executes string as
arbitrary Python code (in the current
environment):
>>> a=1;b=2

>>> exec('for op in "+-*/":
print(eval("a"+op+"b"))')
3

-1

2

0

execfile(string) executes the
contents of the file whose pathname
is specified by string . This can be
useful in loading an existing set of
Python definitions.

635CS 538 Spring 2002
©

The expression
lambda args: expression

creates an anonymous function with
args as its argument list and
expression as it body. For example,
>>> (lambda a:a+1)(2)
3

And there are definitions of map,
reduce and filter to map a
function to a list of values, to reduce
a list (using a binary function) and to
select values from a list (using a
predicate):
>>> def double(a):

... return 2*a;

...

>>> map(double,[1,2,3,4])
[2, 4, 6, 8]

636CS 538 Spring 2002
©

>>> def sum(a,b):

... return a+b

...

>>> reduce(sum,[1,2,3,4,5])
15

>>> def even(a):

... return not(a%2)

...

>>> filter(even,[1,2,3,4,5])
[2, 4]

637CS 538 Spring 2002
©

I/O in Python
The easiest way to print information
in Python is the print statement.
You supply a list of values separated
by commas. Values are converted to
strings (using the str() function)
and printed to standard out, with a
terminating new line automatically
included. For example,
>>> print "1+1=",1+1
1+1= 2

If you don’t want the automatic end
of line, add a comma to the end of
the print list:
>>> for i in range(1,11):

... print i,

...

1 2 3 4 5 6 7 8 9 10

638CS 538 Spring 2002
©

For those who love C’s printf ,
Python provides a nice formatting
capability using a printf-like
notation. The expression

format % tuple

formats a tuple of values using a
format string. The detailed formatting
rules are those of C’s printf . Thus
>>> print "%d+%d=%d" %
 (10,20,10+20)
10+20=30

639CS 538 Spring 2002
©

File-oriented I/O
You open a file using
open(name,mode)

which returns a “file object.”
name is a string representing the file’s
path name; mode is a string
representing the desired access
mode('r' for read, 'w' for write,
etc.).
Thus
>>> f=open("/tmp/f1","w");
>>> f
<open file '/tmp/f1', mode 'w' at
decd8>

opens a temp file for writing.
The command
 f.read(n)

reads n bytes (as a string).

640CS 538 Spring 2002
©

f.read() reads the whole file into a
string. At end-of-file, f.read returns
the null string:
>>> f = open("/tmp/ttt","r")

>>> f.read(3)
'aaa'

>>> f.read(5)
' bbb '

>>> f.read()
'ccc\012ddd eee fff\012g h i\012'

>>> f.read()
''

f.readline() reads a whole line of
input, and f.readlines() reads the
whole input file into a list of strings:
>>> f = open("/tmp/ttt","r")

>>> f.readline()
'aaa bbb ccc\012'

>>> f.readline()

641CS 538 Spring 2002
©

'ddd eee fff\012'

>>> f.readline()
'g h i\012'

>>> f.readline()
''

>>> f = open("/tmp/ttt","r")

>>> f.readlines()
['aaa bbb ccc\012', 'ddd eee
fff\012', 'g h i\012']

f.write(string) writes a string
to file object f ; f.close() closes a
file object:
>>> f = open("/tmp/ttt","w")

>>> f.write("abcd")

>>> f.write("%d %d"%(1,-1))

>>> f.close()

>>> f = open("/tmp/ttt","r")

>>> f.readlines()
['abcd1 -1']

642CS 538 Spring 2002
©

Classes in Python
Python contains a class creation
mechanism that’s fairly similar to
what’s found in C++ or Java.
There are significant differences
though:
• All class members are public.

• Instance fields aren’t declared. Rather,
you just create fields as needed by
assignment (often in constructors).

• There are class fields (shared by all
class instances), but there are no
class methods. That is, all methods
are instance methods.

643CS 538 Spring 2002
©

• All instance methods (including
constructors) must explicitly provide
an initial parameter that represents
the object instance. This parameter is
typically called self . It’s roughly the
equivalent of this in C++ or Java.

644CS 538 Spring 2002
©

Defining Classes
You define a class by executing a class
definition of the form
class name:

 statement(s)

A class definition creates a class
object from which class instances may
be created (just like in Java). The
statements within a class definition
may be data members (to be shared
among all class instances) as well as
function definitions (prefixed by a
def command). Each function must
take (at least) an initial parameter
that represents the class instance
within which the function (instance
method) will operate. For example,

645CS 538 Spring 2002
©

class Example:
 cnt=1
 def msg(self):
 print "Bo"+"o"*Example.cnt+

"!"*self.n

>>> Example.cnt
1

>>> Example.msg
<unbound method Example.msg>

Example.msg is unbound because we
haven’t created any instances of the
Example class yet.
We create class instances by using the
class name as a function:
>>> e=Example()

>>> e.msg()
AttributeError: n

We get the AttributeError
message regarding n because we
haven’t defined n yet! One way to do

646CS 538 Spring 2002
©

this is to just assign to it, using the
usual field notation:
>>> e.n=1

>>> e.msg()
Boo!

>>> e.n=2;Example.cnt=2

>>> e.msg()
Booo!!

We can also call an instance method
by making the class object an explicit
parameter:
>>> Example.msg(e)
Booo!!

It’s nice to have data members
initialized when an object is created.
This is usually done with a
constructor, and Python allows this
too.

647CS 538 Spring 2002
©

A special method named __init__ is
called whenever an object is created.
This method takes self as its first
parameter; other parameters (possibly
made optional) are allowed.
We can therefore extend our
Example class with a constructor:
class Example:
 cnt=1
 def __init__(self,nval=1):
 self.n=nval
 def msg(self):
 print "Bo"+"o"*Example.cnt+
 "!"*self.n

>>> e=Example()

>>> e.n
1

>>> f=Example(2)

>>> f.n
2

648CS 538 Spring 2002
©

You can also define the equivalent of
Java’s toString method by defining
a member function named
__str__(self) .
For example, if we add

def __str__(self):

 return "<%d>"%self.n

to Example ,
then we can include Example objects
in print statements:
>>> e=Example(2)

>>> print e
<2>

649CS 538 Spring 2002
©

Inheritance
Like any language that supports
classes, Python allows inheritance
from a parent (or base) class. In fact,
Python allows multiple inheritance in
which a class inherits definitions from
more than one parent.
When defining a class you specify
parents classes as follows:
class name(parent classes):

 statement(s)

The subclass has access to its own
definitions as well as those available
to its parents. All methods are virtual,
so the most recent definition of a
method is always used.

650CS 538 Spring 2002
©

class C:

 def DoIt(self):
 self.PrintIt()
 def PrintIt(self):
 print "C rules!"

class D(C):
 def PrintIt(self):
 print "D rules!"
 def TestIt(self):
 self.DoIt()

 dvar = D()
 dvar.TestIt()

D rules!

651CS 538 Spring 2002
©

If you specify more than one parent
for a class, lookup is depth-first, left
to right, in the list of parents
provided. For example, given
class A(B,C): ...

we first look for a non-local
definition in B (and its parents), then
in C (and its parents).

652CS 538 Spring 2002
©

Operator Overloading
You can overload definitions of all of
Python’s operators to apply to newly
defined classes. Each operator has a
corresponding method name assigned
to it. For example, + uses __add__ , -
uses __sub__ , etc.

653CS 538 Spring 2002
©

Given
class Triple:
 def __init__(self,A=0,B=0,C=0):
 self.a=A
 self.b=B
 self.c=C
 def __str__(self):
 return "(%d,%d,%d)"%
 (self.a,self.b,self.c)
 def __add__(self,other):

return Triple(self.a+other.a,
self.b+other.b,

 self.c+other.c)

the following code
t1=Triple(1,2,3)

t2=Triple(4,5,6)

print t1+t2

produces
(5,7,9)

654CS 538 Spring 2002
©

Exceptions
Python provides an exception
mechanism that’s quite similar to the
one used by Java.
You “throw” an exception by using a
raise statement:

raise exceptionValue

There are numerous predefined
exceptions, including
OverflowError (arithmetic
overflow), EOFError (when end-of-
file is hit), NameError (when an
undeclared identifier is referenced),
etc.

655CS 538 Spring 2002
©

You may define your own exceptions
as subclasses of the predefined class
Exception :
class badValue(Exception):

 def __init__(self,val):

 self.value=val

You catch exceptions in Python’s
version of a try statement:
try:

 statement(s)

except exceptionName 1, id 1:

 statement(s)

...

except exceptionName n, id n:

 statement(s)

As was the case in Java, an exception
raised within the try body is handled
by an except clause if the raised
exception matches the class named in

656CS 538 Spring 2002
©

the except clause. If the raised
exception is not matched by any
except clause, the next enclosing
try is considered, or the exception is
reraised at the point of call.
For example, using our badValue
exception class,
 def sqrt(val):
 if val < 0.0:
 raise badValue(val)
 else:
 return cmath.sqrt(val)

try:
 print "Ans =",sqrt(-123.0)
except badValue,b:
 print "Can’t take sqrt of",

b.value

When executed, we get
Ans = Can’t take sqrt of -123.0

657CS 538 Spring 2002
©

Modules
Python contains a module feature
that allows you to access Python code
stored in files or libraries. If you have
a source file mydefs.py the
command
 import mydefs

will read in all the definitions stored
in the file. What’s read in can be seen
by executing
dir(mydefs)

To access an imported definition, you
qualify it with the name of the
module. For example,
mydefs.fct

accesses fct which is defined in
module mydefs .

658CS 538 Spring 2002
©

To avoid explicit qualification you can
use the command
from modulename import id 1, id 2,
...

This makes id 1, id 2, ... available
without qualification. For example,
>>> from test import sqrt

>>> sqrt(123)
(11.0905365064+0j)

You can use the command
from modulename import *

to import (without qualification) all
the definitions in modulename.

659CS 538 Spring 2002
©

The Python Library
One of the great strengths of Python
is that it contains a vast number of
modules (at least several hundred)
known collectively as the Python
Library. What makes Python really
useful is the range of prewritten
modules you can access. Included are
network access modules, multimedia
utilities, data base access, and much
more.
See
www.python.org/doc/lib

for an up-to-date listing of what’s
available.

