
CS 538

Project #1

Programming in Scheme

Due: Friday, March 22, 2002

(Not accepted after Monday, April 1, 2002)

Handin Instructions . Place the Scheme code you write to solve this assignment in~cs538-
1/public/handin/proj1/login where login is your login name. Create files1, 2a ,
2b , 2c , 2d , 3a , 3b , 4a , 4b , 4c , 5a , 5b and5c in your handin directory.

1. You are to write a Scheme function make-queue that generates a function that

implements a queue data structure. Recall that a queue operates like a “waiting

line.” New entries are added to the rear end of the queue, and entries are removed

from the front of the queue.

The call (make-queue) should return a function that represents an initially empty

queue. If q is a queue function, it should accept the following calls:

(q enter! val 1 val 2 ...)
q adds val 1, val 2, ... to the end of the queue it represents, with val 1 being the last

value entered (and thus at the very end of the queue). The list (val 1 val 2 ...) is

returned.

(q remove! cnt)

cnt is a non-negative integer. cnt values are removed from the queue q repre-

sents. A list containing the values removed is returned (with the first value

removed at the right end of the list). If the queue does not contain cnt values, then

#f is returned (as an error indication).

(q contents)

Returns a list representing the contents of q. The last element of the queue appears

at the left end of the list; the first element of the queue appears at the right end of

the list

(q clone)

Returns a new queue function whose contents are (initially) identical to the con-

tents of q.

The following calls illustrate how queue functions are expected to behave:

(define my-queue (make-queue))
(my-queue 'enter! 4 5 6) ⇒ (4 5 6)
(my-queue 'enter! 1 2 3) ⇒ (1 2 3)
(my-queue 'contents) ⇒ (1 2 3 4 5 6)
(my-queue 'remove! 2) ⇒ (5 6)

(my-queue 'contents) ⇒ (1 2 3 4)
(define your-queue (my-queue 'clone))
(your-queue 'contents) ⇒ (1 2 3 4)
(my-queue 'remove! 1) ⇒ (4)
(my-queue 'contents) ⇒ (1 2 3)
(your-queue 'contents) ⇒ (1 2 3 4)

2. (a) In Scheme sets can be represented as lists. However, unlike lists, the order of values

in a set is not significant. Thus both (1 2 3) and (3 2 1) represent the same set.

Moreover, the same value may not appear more than once within a list that repre-

sents a set. Thus (1 2 3) is a valid set, but (1 2 1) is not.

Write a Scheme function (valid-set? S) that tests whether set S is valid. A set is

valid if no value in the list appears more than once. In this part you may assume

that sets contain only atomic values (numbers, strings, symbols, etc.). For example

(valid-set? '(1 2 3)) ⇒ #t
(valid-set? '(1 2 1)) ⇒ #f
(valid set? '(1 1.0 "one")) ⇒ #t

(b) Write a Scheme function (equal-sets? S1 S2) that tests whether sets S1 and

S2 (represented as lists) are equal. Two sets are equal if they contain exactly the

same members, ignoring ordering. In this part you may assume that sets contain

only atomic values (numbers, strings, symbols, etc.). If either S1 or S2 is invalid,

return #f (as an error indication). For example

(equal-sets? '(1 2 3) '(3 2 1)) ⇒ #t
(equal-sets? '(1 2) '(3 2 1)) ⇒ #f
(equal-sets? '(curly larry moe) '(moe larry curly)) ⇒ #t
(equal-sets? '(1 1) '(1 1)) ⇒ #f

(c) Two common operations on sets are union and intersection. The union of two sets

is the set of all elements that appear in either set (with no repetitions). The intersec-

tion of two sets is the set of elements that appear in both sets.

Write Scheme functions (union S1 S2) and (intersect S1 S2) that implement

set union and set intersection. You may again assume that set elements are always

atomic. If either S1 or S2 is invalid, return #f (as an error indication). For example

(union '(1 2 3) '(3 2 1)) ⇒ (1 2 3)
(union '(1 2 3) '(3 4 5)) ⇒ (1 2 3 4 5)
(union '(a b c) '(3 2 1)) ⇒ (a b c 1 2 3)
(union '(1 1) '(2 2)) ⇒ #f
(intersect '(1 2 3) '(3 2 1)) ⇒ (1 2 3)
(intersect '(1 2 3) '(4 5 6)) ⇒ ()
(intersect '(1 2 3) '(2 3 4 5 6)) ⇒ (2 3)
(intersect '(1 1) '(2 2)) ⇒ #f
-2-

(d) In general sets can contain other sets. Extend your solution to parts (a), (b) and (c) to

allow sets to contain other sets. For example,

(valid-set? '(1 (1) 2)) ⇒ #t
(valid-set? '((1) 2 (1))) ⇒ #f
(equal-sets? '(1 (2 3)) '((3 2) 1)) ⇒ #t
(equal-sets? '(1 2 3) '((3 2) 1)) ⇒ #f
(equal-sets? '(1 2 3) '((1 2 3)) ⇒ #f
(union '(1 (2) 3) '(3 2 1)) ⇒ (1 2 3 (2))
(union '((1 2 3)) '((3 4 5))) ⇒ ((1 2 3) (3 4 5))
(union '((1 2 3)) '((3 2 1))) ⇒ ((1 2 3))
(intersect '((1 2 3)) '((3 2 1))) ⇒ ((1 2 3))
(intersect '((1 2 3)) '((4 5 6))) ⇒ ()
(intersect '((1) (2) (3)) '((2) (3) (4))) ⇒ ((2) (3))

3. (a) Write a pair of Scheme functions, (gen-list start stop step) and (pair-
prod? list val) . The function gen-list will generate a list of integers, from

start to stop , with consecutive values incremented by step . (If start > stop
then the empty list is generated). For example (gen-lis t 1 9 2) ⇒ (1 3 5 7 9) .

The predicate pair-prod? tests whether any two adjacent values in list have a

product equal to val . For example, (pair-prod? '(1 2 3) 6) ⇒ #t since

2*3=6. Similarly, (pair-prod? (gen-list 1 100 1) 10) ⇒ #f since no two

adjacent integers in the range 1 to 100 have a product of 10.

(b) A problem with a function like pair-prod? is the fact that its list parameter

must be fully computed in advance, even if all the values on the list are not needed.

For example, (pair-prod? (gen-list 1 100000 1) 2) will spend a lot of

time and space building up a list of 100000 values, even though only the first two

are needed!

An alternative to completely building a complex data structure is lazy evaluation.

That is, part of the structure is built along with a suspension—a function that will

supply a few more values upon request. The following two Scheme functions pro-

duce a sequence of integers in a lazy manner.

(define (return-one-val start stop step)
 (if (> (+ start step) stop)
 (cons start #f)
 (cons start

(lambda () (return-one-val (+ start step) stop step)))
)

)

(define (int-seq start stop step)
 (if (> start stop)
 (cons #f #f)
 (return-one-val start stop step)

)
)

-3-

When called, int-seq returns a pair of values. The car is the first integer in the

sequence, or #f if the sequence is empty. The cdr is a function that, when called,

will return another pair. That pair consists of the next integer in the sequence plus

another suspension function. When the end of the sequence is reached, the cdr of

the pair is #f (rather than a function), indicating that no more values can be pro-

duced.

Create a new version of pair-prod? called pair-prod-seq? that takes a lazy

integer sequence (as defined by int-seq) rather than a list as a parameter. You can

use the Scheme function (time (f args)) to time the evaluation of (f args) .

Compare the execution times of (pair-prod? (gen-list 1 100000 1) 90) and

(pair-prod-seq? (int-seq 1 100000 1) 90) . Which is faster? Why? Now

compare the execution times of (pair-prod? (gen-list 1 100000 1) 91) and

(pair-prod-seq? (int-seq 1 100000 1) 91) . Again, which is faster, and

why?

4. (a) Scheme can represent numbers in a variety of forms, including integer, rational,

real and complex. Let’s add a new form—English. That is, we will allow numbers to

be represented as a list of symbols representing English language words corre-

sponding to numbers. Thus 0 would be represented as (zero) , 123 as (one hun-
dred twenty three) and -456789 as (minus four hundred fifty six
thousand seven hundred eighty nine) .

Assume that we represent numbers (in English) using the symbols minus , zero ,

one , two , ... , ten , eleven , twelve , ..., nineteen , twenty , thirty , ..., ninety ,

hundred , thousand , million , For simplicity, numbers that are normally

hypenated (like twenty-three) won’t be.

Write a Scheme function (integer->english int-val) that converts an inte-

ger int-val into english form (that is, a list of symbols representing the number

in English). Your function should handle numbers at least as large as one trillion

(handling even larger numbers is fairly easy). For numbers larger than your imple-

mentation limit (of one trillion or more) you may return the integer unconverted.

(b) Now write an inverse function (english->integer L) that converts a number

in english form back to integer form. Of course, it should be the case that

(english->integer (integer->english int-val)) = int-val for all

integers in the range you handle.

(c) Finally, you are to redefine the +, - , * and / functions so that they accept numbers

in english form as well as integer form (you may ignore numbers in rational,

real and complex forms). You may assume that your extended operators will be

called with only two operands. If both operands are in integer form, then you will

return an integer result. If one or both are in english form, then you will return

a result in english form. For / , you may use truncate to convert fractional quo-

tients to integers; that is, you need not worry about divisions that have a non-zero

remainder.
-4-

The following are sample calls that you should handle:

(+ 123 456) ⇒ 579

(- 111111 '(ten)) ⇒ (one hundred eleven thousand one hundred
one)

(* '(two thousand fifty five) '(one million one)) ⇒ (two bil-
lion fifty five million two thousand fifty five)

(/ 123456789 '(three)) ⇒ (forty one million one hundred fifty
two thousand two hundred sixty three)

5. (a) Assume we have a list L of integers. Define a function (listify L) that divides L
into one or more sublists so that each sublist contains integers in non-decreasing

(sorted) order. That is, if v1 and v2 are adjacent in L and v1 ≤ v2 then v1 and v2
are adjacent in the same sublist. However if v1 > v2 then v2 ends one sublist and

v2 begins the next sublist. For example,

(listify '(3 5 1 8 9 2 1 0)) ⇒ ((3 5) (1 8 9) (2) (1) (0))
(listify '(1 2 3 4 5 6)) ⇒ ((1 2 3 4 5 6))
(listify '(5 4 3 2 1)) ⇒ ((5) (4) (3) (2) (1))

(b) If the output of listify contains a single sublist, then we know the input list L
was in sorted order. This makes it easy to test for duplicates within L—we just com-

pare adjacent values. If listify returns more than one sublist, we can merge the first

two lists into one sorted list, and repeat the process until we have one sorted list.

Then testing for duplicates is easy.

For example, if listify initially produces

((3 5) (1 8 9) (2) (1) (0)) we reduce it to ((1 3 5 8 9) (2) (1)
(0)) , then to ((1 2 3 5 8 9) (1) (0)) , then to ((1 1 2 3 5 8 9) (0)) ,

and finally to ((0 1 1 2 3 5 8 9)) .

Implement (duplicates? L) , which sorts the values in L using listify as a

subroutine and tests for duplicates.

(c) Our algorithm for testing for duplicates is somewhat inefficient. If a duplicate

appears in L it can readily be detected when listify initially partitions L or when

the sublists produced by listify are merged.

Create a function duplicates-cc? (and whatever auxiliary functions you

require) that make duplicate checking integral to the implementation of listify
and the merge component of the sort. As soon as a duplicate is seen, #t should be

immediately returned, without any further processing of L. You should use call-
with-current-continuation to implement the exception mechanism you will

need to return when you see a duplicate value.
-5-

	CS 538
	Project #1
	Programming in Scheme
	1. �����You are to write a Scheme function make-queue that generates a function that implements a...
	2. (a) In Scheme sets can be represented as lists. However, unlike lists, the order of values in ...
	3. (a) Write a pair of Scheme functions, (gen-list start stop step) and (pair- prod? list val). T...
	4. (a) Scheme can represent numbers in a variety of forms, including integer, rational, real and ...
	5. (a) Assume we have a list L of integers. Define a function (listify L) that divides L into one...

