
CS 538

Project #2

Programming in Standard ML
Due: Friday, April 19, 2002

(Not accepted after Friday, April 26, 2002)

1. A widely-used data structure is the priority queue. A priority queue is an ordinary

queue extended with an integer priority. When data values are added to a queue, the

priority controls where the value is added. A value added with priority p is placed

behind all entries with a priority ≤ p and in front of all entries with a priority > p. Note

that if all entries in a priority queue are given the same priority, then a priority queue

acts like an ordinary queue in that new entries are placed behind current entries.

You are to write an SML abstract data type (an abstype) that implements a polymor-

phic priority queue, defined as 'a PriorityQ . You may implement your priority

queue using any reasonable SML data structure (a list of tuples might be a reasonable

choice). The following values, functions, and exceptions should be implemented:

• exception emptyQueue
This exception is raised when front or remove is applied to an empty queue.

• nullQueue
This value represent the null priority queue, which contains no entries.

• enter(pri,val,pQueue)
This function adds an entry with value val and priority pri to pQueue. The

updated priority queue is returned. As noted above, the entry is placed behind

all entries with a priority ≤ pri and in front of all entries with a priority > pri .

• front(pQueue)
This function returns the front value in pQueue, which is the value with the

lowest priority. If more than one entry has the lowest priority, the oldest entry is

chosen. If pQueue is empty, the emptyQueue exception is raised.

• remove(pQueue)
This function removes the front value from pQueue, which is the value with the

lowest priority. If more than one entry has the lowest priority, the oldest entry is

removed. The updated priority queue is returned. If pQueue is empty, the emp-
tyQueue exception is raised.

• contents(pQueue)
This function returns the contents of pQueue in list form. The front of pQueue
is the leftmost element of the list, and the rear of pQueue is the last (rightmost)

member of the list.

• size(pQueue)
This function returns the number of elements currently stored in pQueue.

2. (a) Assume we have a list L of integers. Define a function listify(L) that divides L
into one or more sublists so that each sublist contains integers in non-decreasing

(sorted) order. That is, if v1 and v2 are adjacent in L and v1 ≤ v2 then v1 and v2 are

adjacent in the same sublist. However if v1 > v2 then v2 ends one sublist and v2
begins the next sublist. For example,

listify([3,5,1,8,9,2,1,0]) returns [[3,5],[1,8,9],[2],[1],[0]]
listify([1,2,3,4,5,6]) returns [[1,2,3,4,5,6]]
listify([5,4,3,2,1]) returns [[5],[4],[3],[2],[1]]

(b) If the output of listify contains a single sublist, then we know the input list L
was in sorted order. This makes it easy to test for duplicates within L—we just com-

pare adjacent values. If listify returns more than one sublist, we can merge the first

two lists into one sorted list, and repeat the process until we have one sorted list.

Then testing for duplicates is easy. For example,

[[3,5],[1,8,9],[2],[1],[0]] reduces to [[1,3,5,8,9],[2],[1],[0]],
then to [[1,2,3,5,8,9],[1],[0]] , then to [[1,1,2,3,5,8,9],[0]] and

finally to [0,1,1,2,3,5,8,9] .

Implement duplicates(L) , which sorts the values in L using listify as a sub-

routine and tests for duplicates.

(c) Our algorithm for testing for duplicates is somewhat inefficient. If a duplicate

appears in L it can readily be detected when listify initially partitions L or when

the sublists produced by listify are merged.

Create a function duplicates2 (and whatever auxiliary functions you require) in

which duplicate checking is integral to the implementation of listify and the

merge component of the sort. As soon as a duplicate is seen, true should be imme-

diately returned, without any further processing of L. If no duplicates are present,

return false after the sort completes (but without any further checking). Use

SML’s exception mechanism to force a return when you see a duplicate value.

3. (a) Write an ML function that computes the following recursive function:

f(0) = 1
f(-1) = 0
f(-2) = 0
f(m) = f(m-3) + f(m-2) + f(m-1) for m ≥1

(Be sure to remember that in ML ~ is unary minus and - is binary minus.)

What are the values of f(28), f(29), and f(30)? How long does it take to compute

each of these values?

To start a “CPU timer” in ML use

val t = Timer.startCPUTimer();

To determine how much CPU time (in seconds) has elapsed since timer t was cre-

ated use

Time.toReal(#usr(Timer.checkCPUTimer(t)));

Estimate how long f(34) will take to compute (using your timings for f(28), f(29),
and f(30)).
-2-

(b) In a functional language like ML without side-effects or assignments, the value of a

function always depends solely on its arguments. This allows us to use the

memoizing optimization. When a function is called, its arguments and result value

can be recorded. If the function is called again with the same arguments, the stored

result can be returned immediately.

Write an ML function fastF(m) that is a solution to part (a) using memoizing.

What is the value of fastF(34) ? How long does it take to compute?

4. (a) Recall that a lazy list is a useful structure for representing a long or even infinite

list. In SML a lazy list can be defined as

datatype 'a lazyList =
nullList | cons of 'a * (unit -> 'a lazyList)

This definition says that lazy lists are polymorphic, having a type of 'a . A value of a

lazy list is either nullList or a cons value consisting of the head of the list and a

function of zero arguments that, when called, will return a lazy list representing the

rest of the list.

Write the following SML functions that create and manipulate lazy lists:

• seq(first,last)
This function takes two integers and returns an integer lazy list containing the

sequence of values first , first+1 , ... , last

• infSeq(first)
This function takes an integer and returns an integer lazy list containing the

infinite sequence of values first , first+1 ,

• firstN(lazyListVal,n)
This function takes a lazyList and an integer and returns an ordinary SML

list containing the first n values in the lazyList . If the lazyList contains

fewer than n values, then all the values in the lazyList are returned.

• Nth(lazyListVal,n)
This function takes a lazyList and an integer and returns an option repre-

senting the n-th value in the lazyList (counting from 1). If the lazyList
contains fewer than n values, then none is returned. (Recall that 'a option =

some of 'a | none).

(b) Is is useful to remove unwanted values from a list using a filter. A filter, denoted as

filter(controlList,dataList) , uses a boolean valued control list to select

values from a data list; true signals that the corresponding data list value is to be

kept; false signals that the corresponding data list value is to be deleted.

For example, filter([true, false, false, true], [1,2,3,4]) =

[1,4] . You are to program an SML version of filter that uses a lazy boolean list

to filter a lazy data list; the result is a lazy list containing only data list values corre-

sponding to true values in the control list.
-3-

(c) A wide variety of techniques have been devised to compute prime numbers (num-

bers evenly divisible only by themselves and one). One of the oldest techniques is

the “Sieve of Eratosthenes.” This technique is remarkably simple.

You start with the infinite list L = 2, 3, 4, 5, The head of this list (2) is a prime. If

you filter out all values that are a multiple of 2, you get the list 3, 5, 7, 9, The head

of this list (3) is a prime. Moreover, if you filter out all values that are a multiple of 3,

you get the list 5, 7, 11, 13, 17, Repeating the process, you repeatedly take the

head of the resulting list as the next prime, and then filter from this list all multiples

of the head value.

You are to write a SML function primes() that computes a lazyList containing

all prime numbers, starting at 2, using the “Sieve of Eratosthenes.” To test your

function, evaluate firstN(primes(),10) . You should get [2,3,5,7,11,13,
17,19,23,29]. Try Nth(primes(),20) . You should get some(71) . (This

computation may take a few seconds, and do several garbage collections, as there is

a lot of recursion going on.)
-4-

	CS 538
	Project #2
	Programming in Standard ML
	1. A widely-used data structure is the priority queue. A priority queue is an ordinary queue exte...
	2. (a) Assume we have a list L of integers. Define a function listify(L) that divides L into one ...
	3. (a) Write an ML function that computes the following recursive function:
	4. (a) Recall that a lazy list is a useful structure for representing a long or even infinite lis...

