Abstract Data Types

ML also provides abstract data types
in which the implementation of the
type is hidden from users.

The general form is
abstype name = implementation
with

val and fun definitions
end,;
Users may access the name of the
abstract type and the val and fun
definitions that follow the with , but
the implementation ~ may be used
only with the body of the abstype
definition.

S 538 Spring 2004

301

Local value and function definitions,
not to be exported to users of the
type can be created using the local
definition mechanism described
earlier:
local

val and fun definitions
in

exported definitions
end;

€S 538 Spring 2004°

303

Example

abstype 'a stack =
stk of 'a list

with
val Null = stk([])
fun empty(stk([])) = true
| empty(stk(_::)) = false
fun top(stk(h::_)) =h
fun pop(stk(_::t)) = stk(t)
fun push(v,stk(L)) =
stk(v::L)
end
type 'a stack
val Null = - : 'a stack
val empty = fn : 'a stack -> bool
val top = fn : 'a stack -> 'a
val pop =
fn : 'a stack -> 'a stack
val push =fn:
'a * 'a stack -> 'a stack

€S 538 Spring 2004

302

abstype 'a stack =
stk of 'a list

with
local
fun size(stk(L))=length(L);
in
val Null = stk([])
fun empty(s) =
(size(s) = 0)
fun top(stk(h::_)) = h
fun pop(stk(_::t)) = stk(t)
fun push(v,stk(L)) =
stk(v::L)
end
end
type 'a stack
val Null = - : 'a stack
val empty = fn : 'a stack -> bool
val top = fn : 'a stack -> 'a
val pop =fn:
'a stack -> 'a stack

val push =fn:
'a * 'a stack -> 'a stack

S 538 Spring 2004”

304

Why are abstract data types useful?

Because they hide an implementation
of a type from a user, allowing
implementation changes without any
impact on user programs.

Consider a simple implementation of
queues.
abstype 'a queue =
g of 'a list
with
val Null = q([])
fun front(q(h::_)) =h
fun rm(q(_::t)) = q(t)
fun enter(v,q(L)) =
q(rev(v::rev(L)))

end
type 'a queue
val Null = - : 'a queue

val front = fn : 'a queue ->'a

CS 538 Sprin:

g 2004

305

A more efficient (but less obvious)
implementation of a queue is to store
it as two lists. One list represents the
“front” of the queue. It is from this
list that we extract the front value,
and from which we remove elements.

The other list represents the “back” of
the queue (in reversed order). We add
elements to the rear of the queue by
adding elements to the front of the
list. From time to time, when the
front list becomes null, we “promote”
the rear list into the front list (by
reversing it). Now access to both the
front and the back of the queue is
fast and direct. The new
implementation is:

CS 538 Spril

ing 2004°

val rm =
fn :'a queue ->'a queue

val enter =
fn:'a*'a queue ->'a queue

This implementation of queues is
valid, but somewhat inefficient. In
particular to enter a new value onto
the rear end of a queue, we do the
following:
fun enter(v,q(L)) =

q(rev(v::rev(L)))
We reverse the list that implements
the queue, add the new value to the
head of the reversed queue then
reverse the list a second time.

€S 538 Spring 2004

306

abstype 'a queue =
g of 'alist * 'a list
with
val Null = q([1.[1)
fun front(q(h::_,_)) =h

| front(q([].L)) =
front(q(rev(L).[]))

fun rm(q(_::t,L)) = q(t,L)
| rm(q(l],L)) =
rm(q(rev(L),[))
fun enter(v,q(L1,L2)) =
q(L1,v::L2)
end
type ' aqueue
val Null = - :
val front = fn :
"aqueue-> 'a
valrm=1fn:
' a queue ->
val enter = fn :
"a* 'aqueue ->

' aqueue

' a queue

' a queue

S 538 Spring 2004”

308

From the user’s point of view, the two
implementations are identical (they
export exactly the same set of values
and functions). Hence the new
implementation can replace the old
implementation without any impact
at all to the user (except, of course,
performance!).

S 538 Spring 2004

309

In ML we can raise an exception if an
illegal or unexpected operation
occurs. Asking for the top of an
empty stack ought to raise an
exception since the requested value
does not exist.

ML contains a number of predefined
exceptions, including
Match Empty Div Overflow

(exception names by convention
begin with a capital letter).

Predefined exception are raised by
illegal values or operations. If they
are not caught, the run-time system
prints an error message.

€S 538 Spring 2004°

Exception Handling

Our definitions of stacks and queues
are incomplete. Reconsider our
definition of stack:

abstype 'a stack =
stk of 'a list

with

val Null = stk([])

fun empty(stk([])) = true

| empty(stk(_::_)) = false

fun top(stk(h::_)) =h

fun pop(stk(_::t)) = stk(t)

fun push(v,stk(L)) =

stk(v::L)
end
What happens if we evaluate
top(Null);
We get a “match failure” because our
definition of top is incomplete!

CS 538 Sprin

g 2004 310

fun f(1) = 2;
val f=fn:int->int
f(2);

uncaught exception nonexhaustive
match failure

hd [];

uncaught exception Empty
1000000*1000000;

uncaught exception overflow

(1 div 0);

uncaught exception divide by zero
1.0/0.0;

val it = inf : real

(inf is the IEEE floating-point
standard “infinity” value)

S 538 Spring 2004” 312

User Defined Exceptions

New exceptions may be defined as
exception name;

or

exception name of type;

For example

exception IsZero;

exception IsZero

exception NegValue of real;
exception NegValue of real

S 538 Spring 2004 313

val sgrt = Real.Math.sqrt;
val sqrt = fn : real -> real
fun sgroot(x) =

if x<0.0

then raise NegValue(x)
else sqrt(x);

val sqroot = fn : real -> real
sqroot(2.0);

val it = 1.41421356237 : real
sgroot(~2.0);

uncaught exception NegValue

€S 538 Spring 2004° 315

Exceptions May be Raised

The raise statement raises (throws)
an exception:

raise exceptionName;

or

raise exceptionName(expr);
For example

fun divide(a,0) = raise IsZero
| divide(a,b) = a div b;

val divide =

fn:int *int -> int

divide(10,3);

val it=3:int

divide(10,0);

uncaught exception IsZero

€S 538 Spring 2004 314

Exception Handlers

You may catch an exception by
defining a handler for it:
(expr) handle exceptionl => vall
|| exception2 => val2
Il
For example,

(sqroot ~100.0)
handle NegValue(v) =>

(sqrt (~v));

val it = 10.0 : real

S 538 Spring 2004” 316

Stacks Revisited

We can add an exception, EmptyStk ,
to our earlier stack type to handle
top Or pop operations on an empty
stack:
abstype 'a stack = stk of 'a list
with

val Null = stk([])

exception EmptyStk

fun empty(stk([])) = true

| empty(stk(_::_)) = false

fun top(stk(h::_)) =h

| top(stk([l)) =
raise EmptyStk

fun pop(stk(_::t)) = stk(t)

| pop(stk([])) =
raise EmptyStk

fun push(v,stk(L)) =
stk(v::L)

end

S 538 Spring 2004

type 'a stack

val Null = - : 'a stack

exception EmptyStk

val empty = fn : 'a stack -> bool
val top =fn: 'a stack ->'a

val pop =fn:

'a stack -> 'a stack

val push = fn : 'a * 'a stack ->
‘a stack

pop(Null);

uncaught exception EmptyStk
top(Null) handle EmptyStk => 0;
valit=0:int

€S 538 Spring 2004 318

