
301CS 538 Spring 2004
©

Abstract Data Types
ML also provides abstract data types
in which the implementation of the
type is hidden from users.
The general form is
abstype name = implementation

with

 val and fun definitions

end;

Users may access the name of the
abstract type and the val and fun
definitions that follow the with , but
the implementation may be used
only with the body of the abstype
definition.

302CS 538 Spring 2004
©

Example
abstype 'a stack =
 stk of 'a list

with

 val Null = stk([])

 fun empty(stk([])) = true

 | empty(stk(_::_)) = false

fun top(stk(h::_)) = h
 fun pop(stk(_::t)) = stk(t)
 fun push(v,stk(L)) =
 stk(v::L)

end
type 'a stack

val Null = - : 'a stack

val empty = fn : 'a stack -> bool

val top = fn : 'a stack -> 'a

val pop =
 fn : 'a stack -> 'a stack

val push = fn :
 'a * 'a stack -> 'a stack

303CS 538 Spring 2004
©

Local value and function definitions,
not to be exported to users of the
type can be created using the local
definition mechanism described
earlier:
local

 val and fun definitions

 in

 exported definitions

 end;

304CS 538 Spring 2004
©

abstype 'a stack =
 stk of 'a list
with
 local
 fun size(stk(L))=length(L);
 in
 val Null = stk([])
 fun empty(s) =
 (size(s) = 0)

fun top(stk(h::_)) = h
 fun pop(stk(_::t)) = stk(t)
 fun push(v,stk(L)) =
 stk(v::L)
 end
end
type 'a stack
val Null = - : 'a stack
val empty = fn : 'a stack -> bool
val top = fn : 'a stack -> 'a
val pop = fn :
 'a stack -> 'a stack
val push = fn :
 'a * 'a stack -> 'a stack

305CS 538 Spring 2004
©

Why are abstract data types useful?
Because they hide an implementation
of a type from a user, allowing
implementation changes without any
impact on user programs.
Consider a simple implementation of
queues:
abstype 'a queue =
 q of 'a list

with

 val Null = q([])

fun front(q(h::_)) = h
 fun rm(q(_::t)) = q(t)
 fun enter(v,q(L)) =
 q(rev(v::rev(L)))

end
type 'a queue

val Null = - : 'a queue

val front = fn : ’a queue -> 'a

306CS 538 Spring 2004
©

val rm =
 fn : 'a queue -> 'a queue

val enter =
 fn : 'a * 'a queue -> 'a queue

This implementation of queues is
valid, but somewhat inefficient. In
particular to enter a new value onto
the rear end of a queue, we do the
following:
fun enter(v,q(L)) =
 q(rev(v::rev(L)))

 We reverse the list that implements
the queue, add the new value to the
head of the reversed queue then
reverse the list a second time.

307CS 538 Spring 2004
©

A more efficient (but less obvious)
implementation of a queue is to store
it as two lists. One list represents the
“front” of the queue. It is from this
list that we extract the front value,
and from which we remove elements.
The other list represents the “back” of
the queue (in reversed order). We add
elements to the rear of the queue by
adding elements to the front of the
list. From time to time, when the
front list becomes null, we “promote”
the rear list into the front list (by
reversing it). Now access to both the
front and the back of the queue is
fast and direct. The new
implementation is:

308CS 538 Spring 2004
©

abstype 'a queue =
 q of 'a list * 'a list

with

 val Null = q([],[])

fun front(q(h::_,_)) = h
 | front(q([],L)) =
 front(q(rev(L),[]))
 fun rm(q(_::t,L)) = q(t,L)
 | rm(q([],L)) =
 rm(q(rev(L),[]))
 fun enter(v,q(L1,L2)) =
 q(L1,v::L2)

end

type ' a queue

val Null = - : ' a queue

val front = fn :
' a queue -> ' a

val rm = fn :
' a queue -> ' a queue

val enter = fn :
' a * ' a queue -> ' a queue

309CS 538 Spring 2004
©

From the user’s point of view, the two
implementations are identical (they
export exactly the same set of values
and functions). Hence the new
implementation can replace the old
implementation without any impact
at all to the user (except, of course,
performance!).

310CS 538 Spring 2004
©

Exception Handling
Our definitions of stacks and queues
are incomplete. Reconsider our
definition of stack:
abstype 'a stack =
 stk of 'a list

with

 val Null = stk([])

 fun empty(stk([])) = true

 | empty(stk(_::_)) = false

fun top(stk(h::_)) = h
 fun pop(stk(_::t)) = stk(t)
 fun push(v,stk(L)) =
 stk(v::L)

end

What happens if we evaluate
top(Null);

We get a “match failure” because our
definition of top is incomplete!

311CS 538 Spring 2004
©

In ML we can raise an exception if an
illegal or unexpected operation
occurs. Asking for the top of an
empty stack ought to raise an
exception since the requested value
does not exist.
ML contains a number of predefined
exceptions, including
Match Empty Div Overflow

(exception names by convention
begin with a capital letter).
Predefined exception are raised by
illegal values or operations. If they
are not caught, the run-time system
prints an error message.

312CS 538 Spring 2004
©

fun f(1) = 2;
val f = fn : int -> int

f(2);
uncaught exception nonexhaustive
match failure

hd [];
uncaught exception Empty

1000000*1000000;
uncaught exception overflow

(1 div 0);
uncaught exception divide by zero

1.0/0.0;

val it = inf : real

(inf is the IEEE floating-point
standard “infinity” value)

313CS 538 Spring 2004
©

User Defined Exceptions
New exceptions may be defined as
exception name;

or
exception name of type;

For example
exception IsZero;
exception IsZero

exception NegValue of real;
exception NegValue of real

314CS 538 Spring 2004
©

Exceptions May be Raised
The raise statement raises (throws)
an exception:
raise exceptionName;

or
raise exceptionName(expr);

For example
fun divide(a,0) = raise IsZero
 | divide(a,b) = a div b;
val divide =
 fn : int * int -> int

divide(10,3);
val it = 3 : int

divide(10,0);
uncaught exception IsZero

315CS 538 Spring 2004
©

val sqrt = Real.Math.sqrt;
val sqrt = fn : real -> real

fun sqroot(x) =
 if x < 0.0
 then raise NegValue(x)
 else sqrt(x);
val sqroot = fn : real -> real

sqroot(2.0);
val it = 1.41421356237 : real

sqroot(~2.0);
uncaught exception NegValue

316CS 538 Spring 2004
©

Exception Handlers
You may catch an exception by
defining a handler for it:
(expr) handle exception1 => val1
 || exception2 => val2
 || ... ;

For example,
(sqroot ~100.0)
 handle NegValue(v) =>
 (sqrt (~v));
val it = 10.0 : real

317CS 538 Spring 2004
©

Stacks Revisited
We can add an exception, EmptyStk ,
to our earlier stack type to handle
top or pop operations on an empty
stack:
abstype 'a stack = stk of 'a list
with
 val Null = stk([])
 exception EmptyStk
 fun empty(stk([])) = true
 | empty(stk(_::_)) = false
 fun top(stk(h::_)) = h
 | top(stk([])) =
 raise EmptyStk
 fun pop(stk(_::t)) = stk(t)
 | pop(stk([])) =
 raise EmptyStk
 fun push(v,stk(L)) =
 stk(v::L)
end

318CS 538 Spring 2004
©

type 'a stack
val Null = - : 'a stack
exception EmptyStk
val empty = fn : 'a stack -> bool
val top = fn : 'a stack -> 'a
val pop = fn :
 'a stack -> 'a stack
val push = fn : 'a * 'a stack ->
'a stack

pop(Null);
uncaught exception EmptyStk
top(Null) handle EmptyStk => 0;
val it = 0 : int

