
59CS 538 Spring 2006
©

Type Equivalence in Classes
In C, C++ and Java, instances of the
same struct or class are type-
equivalent, and mutually assignable.
For example:
class MyClass { ... }
MyClass v1, v2;
v1 = v2; // Assignment is OK

We expect to be able to assign values
of the same type, including class
objects.
However, sometimes a class models a
data object whose size or shape is set
upon creation (in a constructor).
Then we may not want assignment to
be allowed.

60CS 538 Spring 2006
©

class Point {
 int dimensions;
 float coordinates[];
 Point () {
 dimensions = 2;
 coordinates = new float[2];
 }
 Point (int d) {
 dimensions = d;
 coordinates = new float[d];
 }
 }
 Point plane = new Point();
 Point solid = new Point(3);

 plane = solid; //OK in Java

This assignment is allowed, even
though the two objects represent
points in different dimensions.

61CS 538 Spring 2006
©

Subtypes
In C++, C# and Java we can create
subclasses—new classes derived from
an existing class.
We can use subclasses to create new
data objects that are similar (since
they are based on a common parent),
but still type-inequivalent.
Example:

class Point2 extends Point {

 Point2() {super(2); }
 }
 class Point3 extends Point {
 Point3() {super(3); }
 }
 Point2 plane = new Point2();
 Point3 solid = new Point3();

plane = solid; //Illegal in Java

62CS 538 Spring 2006
©

Parametric Polymorphism
We can create distinct subclasses
based on the values passed to
constructors. But sometimes we want
to create subclasses based on distinct
types, and types can’t be passed as
parameters. (Types are not values, but
rather a property of values.)
We see this problem in Java, which
tries to create general purpose data
structures by basing them on the
class Object . Since any object can be
assigned to Object (all classes must
be a subclass of Object), this works—
at least partially.

63CS 538 Spring 2006
©

class LinkedList {
 Object value;
 LinkedList next;
 Object head() {return value;}

LinkedList tail(){return next;}
 LinkedList(Object O) {
 value = O; next = null;}
 LinkedList(Object O,
 LinkedList L){
 value = O; next = L;}
}

Using this class, we can create a
linked list of any subtype of Object .
But,
• We can’t guarantee that linked lists

are type homogeneous (contain only a
single type).

• We must cast Object types back into
their “real” types when we extract list
values.

64CS 538 Spring 2006
©

• We must use wrapper classes like
Integer rather than int (because
primitive types like int aren’t
objects, and aren’t subclass of
Object).

For example, to use LinkedList to
build a linked list of int s we do the
following:

LinkedList l =
 new LinkedList(new Integer(123));

 int i =
 ((Integer) l.head()).intValue();

This is pretty clumsy code. We’d
prefer a mechanism that allows us to
create a “custom version” of
LinkedList , based on the type we
want the list to contain.

65CS 538 Spring 2006
©

We can’t just call something like
LinkedList(int) or
LinkedList(Integer) because

types can’t be passed as parameters.
Parametric polymorphism is the
solution. Using this mechanism, we
can use type parameters to build a
“custom version” of a class from a
general purpose class.
C++ allows this using its template
mechanism. Tiger Java, the newest
version of Java, also allows type
parameters.
In both languages, type parameters
are enclosed in “angle brackets” (e.g.,
LinkedList<T> passes T, a type, to
the LinkedList class).

66CS 538 Spring 2006
©

Thus we have
class LinkedList<T> {
 T value; LinkedList<T> next;
 T head() {return value;}
 LinkedList<T> tail() {
 return next;}
 LinkedList(T O) {
 value = O; next = null;}
 LinkedList(T O,LinkedList<T> L)
 {value = O; next = L;}
}

LinkedList<int> l =
 new LinkedList(123);

int i = l.head();

67CS 538 Spring 2006
©

Overloading and Ad-hoc
Polymorphism

Classes usually allow overloading of
method names, if only to support
multiple constructors.
That is, more than one method
definition with the same name is
allowed within a class, as long as the
method definitions differ in the
number and/or types of the
parameters they take.
For example,
class MyClass {

 int f(int i) { ... }

 int f(float g) { ... }

 int f(int i, int j) { ... }

}

68CS 538 Spring 2006
©

Overloading is sometimes called “ad
hoc” polymorphism, because, to the
programmer, it appears that one
method can take a variety of different
parameter types. This isn’t true
polymorphism because the methods
have different bodies; there is no
sharing of one definition among
different parameter types. There is no
guarantee that the different
definitions do the same thing, even
though they share a common name.

69CS 538 Spring 2006
©

Issues in Overloading
Though many languages allow
overloading, few allow overloaded
methods to differ only on their result
types. (Neither C++ nor Java allow
this kind of overloading, though Ada
does). For example,
class MyClass {

 int f() { ... }

 float f() { ... }

}

is illegal. This is unfortunate, since
methods with the same name and
parameters, but different result types,
could be used to automatically
convert result values to the type
demanded by the context of call.

70CS 538 Spring 2006
©

Why is this form of overloading
usually disallowed?
It’s because overload resolution
(deciding which definition to use)
becomes much harder. Consider
class MyClass {
 int f(int i, int j) { ... }
 float f(float i, float j) { ... }
 float f(int i, int j) { ... }
}

in
int a = f(f(1,2), f(3,4));

which definitions of f do we use in
each of the three calls? Getting the
correctly answer can be tricky, though
solution algorithms do exist.

71CS 538 Spring 2006
©

Operator Overloading
Some languages, like C++ and C#,
allow operators to be overloaded. You
may add new definitions to existing
operators, and use them on your own
types. For example,
 class MyClass {

 int i;

 public:

 int operator+(int j) {

 return i+j; }

 }

 MyClass c;

 int i = c+10;

 int j = c.operator+(10);

 int k = 10+c; // Illegal!

72CS 538 Spring 2006
©

The expression 10+c is illegal because
there is no definition of + for the
types int and MyClass& . We can
create one by using C++’s friend
mechanism to insert a definition into
MyClass that will have access to
MyClass ’s private data:
 class MyClass {

 int i;

 public:

 int operator+(int j) {

 return i+j; }
 friend int operator+
 (int j, MyClass& v){

 return j+v.i; }

 }

 MyClass c;

 int k = 10+c; // Now OK!

73CS 538 Spring 2006
©

C++ limits operator overloading to
existing predefined operators. A few
languages, like Algol 68 (a successor
to Algol 60, developed in 1968),
allow programmers to define brand
new operators.
In addition to defining the operator
itself, it is also necessary to specify
the operator’s precedence (which
operator is to be applied first) and its
associativity (does the operator
associate from left to right, or right
to left, or not at all). Given this extra
detail, it is possible to specify
something like

op +++ prec = 8;
 int op +++(int& i, int& j) {
 return (i++)+(j++); }

(Why is int& used as the parameter
type rather than int ?)

