
74CS 538 Spring 2006
©

Parameter Binding
Almost all programming languages
have some notion of binding an actual
parameter (provided at the point of
call) to a formal parameter (used in
the body of a subprogram).
There are many different, and
inequivalent, methods of parameter
binding. Exactly which is used
depends upon the programming
language in question.
Parameter Binding Modes include:
• Value: The formal parameter

represents a local variable initialized
to the value of the corresponding
actual parameter.

75CS 538 Spring 2006
©

• Result: The formal parameter
represents a local variable. Its final
value, at the point of return, is copied
into the corresponding actual
parameter.

• Value/Result: A combination of the
value and results modes. The formal
parameter is a local variable
initialized to the value of the
corresponding actual parameter. The
formal’s final value, at the point of
return, is copied into the
corresponding actual parameter.

• Reference: The formal parameter is a
pointer to the corresponding actual
parameter. All references to the
formal parameter indirectly access
the corresponding actual parameter
through the pointer.

76CS 538 Spring 2006
©

• Name: The formal parameter
represents a block of code
(sometimes called a thunk) that is
evaluated to obtain the value or
address of the corresponding actual
parameter. Each reference to the
formal parameter causes the thunk to
be reevaluated.

• Readonly (sometimes called Const):
Only reads of the formal parameter
are allowed. Either a copy of the
actual parameter’s value, or its
address, may be used.

77CS 538 Spring 2006
©

What Parameter Modes do
Programming Languages Use?
• C: Value mode except for arrays which

pass a pointer to the start of the array.

• C++: Allows reference as well as value
modes. E.g.,

int f(int a, int& b)

• C#: Allows result (out) as well as
reference and value modes. E.g.,

int g(int a, out int b)

• Java: Scalar types (int , float , char ,
etc.) are passed by value; objects are
passed by reference (references to
objects are passed by value).

• Fortran: Reference (even for constants!)

• Ada: Value/result, reference, and
readonly are used.

78CS 538 Spring 2006
©

Example
void p(value int a,
 reference int b,
 name int c) {
 a=1; b=2; print(c)
}
int i=3, j=3, k[10][10];
p(i,j,k[i][j]);

What element of k is printed?
• The assignment to a does not affect

i , since a is a value parameter.

• The assignment to b does affect j ,
since b is a reference parameter.

• c is a name parameter, so it is
evaluated whenever it is used. In the
print statement k[i][j] is printed.
At that point i =3 and j =2, so
k[3][2] is printed.

79CS 538 Spring 2006
©

Why are there so Many
Different Parameter Modes?

Parameter modes reflect different
views on how parameters are to be
accessed, as well as different degrees
of efficiency in accessing and using
parameters.
• Call by value protects the actual

parameter value. No matter what the
subprogram does, the parameter can’t
be changed.

• Call by reference allows immediate
updates to the actual parameter.

• Call by readonly protects the actual
parameter and emphasizes the
“constant” nature of the formal
parameter.

80CS 538 Spring 2006
©

• Call by value/result allows actual
parameters to change, but treats a
call as a single step (assign parameter
values, execute the subprogram’s
body, update parameter values).

• Call by name delays evaluation of an
actual parameter until it is actually
needed (which may be never).

81CS 538 Spring 2006
©

Call by Name
Call by name is a special kind of
parameter passing mode. It allows
some calls to complete that otherwise
would fail. Consider

f(i,j/0)

Normally, when j/0 is evaluated, a
divide fault terminates execution. If
j/0 is passed by name, the division is
delayed until the parameter is needed,
which may be never.
Call by name also allows programmers
to create some interesting solutions
to hard programming problems.
Consider the conditional expression
found in C, C++, and Java:

(cond ? value1 : value2)

82CS 538 Spring 2006
©

What if we want to implement this as
a function call:

condExpr(cond,value1,value2) {

 if (cond)
 return value1;
 else return value2;
 }

With most parameter passing modes
this implementation won’t work!
(Why?)
But if value1 and value2 are passed
by name, the implementation is
correct.

83CS 538 Spring 2006
©

Call by Name and Lazy
Evaluation

Call by name has much of the flavor
of lazy evaluation. With lazy
evaluation, you don’t compute a value
but rather a suspension—a function
that will provide a value when called.
This can be useful when we need to
control how much of a computation
is actually performed.
Consider an infinite list of integers.
Mathematically it is represented as
 1, 2, 3, ...
How do we compute a data structure
that represents an infinite list?

84CS 538 Spring 2006
©

The obvious computation
infList(int start) {

 return list(start,
 infList(start+1));
 }

doesn’t work. (Why?)
A less obvious implementation, using
suspensions, does work:
infList(int start) {

 return list(start,
 function() {
 return infList(start+1);
 });
}

Now, whenever we are given an
infinite list, we get two things: the
first integer in the list and a
suspension function. When called,
this function will give you the rest of
the infinite list (again, one more

85CS 538 Spring 2006
©

value and another suspension
function).
The whole list is there, but only as
much as you care to access is actually
computed.

86CS 538 Spring 2006
©

Eager Parameter Evaluation
Sometimes we want parameters
evaluated eagerly—as soon as they are
known.
Consider a sorting routine that breaks
an array in half, sorts each half, and
then merges together the two sorted
halves (this is a merge sort).
In outline form it is:
sort(inputArray) {
 ...
merge(sort(leftHalf(inputArray)),
 sort(rightHalf(inputArray)));}

This definition lends itself nicely to
parallel evaluation: The two halves of
an input array can be sorted in
parallel. Each of these two halves can
again be split in two, allowing parallel
sorting of four quarter-sized arrays,

87CS 538 Spring 2006
©

then leading to 8 sorts of 1/8 sized
arrays, etc.
But,
to make this all work, the two
parameters to merge must be
evaluated eagerly, rather than in
sequence.

