
CS 538

Midterm Exam

Friday, March 31, 2006

5:00 PM — 7:00 PM

Instructions
Answer question #1 and any three others. (If you answer more, only the first four will count.)

Point values are as indicated. Please try to make your answers neat and coherent. Remember, if

we can’t read it, it’s wrong. Partial credit will be given, so try to put something down for each

question (a blank answer always gets 0 points!).

1. (1 point)

A subprogram that assigns to a non-local variable is said to have

(a) a sideline

(b) a side effect

(c) a sideshow

(d) a sidebar

2. (a) (17 points)

We have seen that the mapfunction is very useful when we wish to apply a function to a list of

values. Many variations of map are possible.

Consider a function mapB that is called as

(mapB bin-fct L)
bin-fct is a binary function—a function that takes two parameters (for example, + or <).

mapB applies bin-fct to each pair of adjacent values in L. If L has N values in it, mapB
produces a list of N-1 values. Those values are the result of applying bin-fct to the first and

second list values, then the second and third list values, etc. If L contains fewer than two values

in it, L is returned (without ever using bin-fct).

For example,

(mapB + '(1 2 3 4)) evaluates to (3 5 7)
(mapB + '(1)) evaluates to (1)
(mapB + '()) evaluates to ()

Write a Scheme program that implements mapB.

(b) (16 points)

Let us now consider another variant of the map function called mapF. mapF is called as

(mapF fct filter L) .

fct is a function of one argument. It is applied to each element of L for which filter (a

predicate) returns anything other than #f . Thus filter “filters” L, selecting those values to

which fct will be applied. For example,

(mapF (lambda(x) (* x 2)) (lambda (y) (> y 0)) '(1 - 1 0 2 -2 3 -3))
produces (2 4 6) . It does this because values ≤ 0 are filtered out, and remaining values are

passed to a function that doubles its argument.

Write a Scheme program that implements mapF.

3. (a) (10 points)

Explain what call/cc (also known as call-with-current-continuation) does.

(b) (11 points)

call/cc is often used in Scheme to simulate a “throw-catch” exception mechanism as is found

in Java and other languages. Explain what needs to be done in a Scheme function f so that it

can “throw” an exception, e, that will be caught (and processed) by a caller of f . You may

assume that only one caller of f will try to catch the exception f throws.

(c) (12 points)

Assume we have an application that accesses a medical database, med-info-db . Some

information in this database may be locked. The predicate locked? tests if a piece of data is

locked. If it is, the data must be read using the function (unlock data password) where

password is known only to the owner of data.

The following code fragment might appear in an application that accesses medical data:

(let ((data (lookup med-info-db info-wanted)))
(if (locked? data)

(unlock data password)
data

)
)

This code has the problem that password must always be provided, even if the info-wanted
is not locked (e.g., a patient’s name or phone number).

Modify this code so that if a password is needed, a continuation function is returned to the

caller. This continuation, when given the necessary password, will resume execution by

unlocking the data and finishing the computation.

You may assume that the program has available a continuation named return that allows you

to return a value directly to the original caller (who will provide the needed password).

4. (a) (13 points)

Assume we have a procedural language similar to C++ or Java. We aren’t exactly sure how it

passes scalar parameters, but we know the mechanism is one of call-by-value, call-by-refer-

ence, or call-by-name. Write a simple test routine that will determine the parameter passing

mechanism that is used. When executed, your test routine should print out “by value” or “by

reference” or “by name.”

(b) (20 points)

In languages like C++ and Java, a method name or operator is overloaded by simply adding

a new definition of an existing identifier or symbol that differs in the number or type of its

arguments. In an dynamically typed language, this form of overloading can’t be done

because function definitions don’t include type declarations.

Explain how an existing function might be extended in a language like Scheme to accept

new parameter types (without losing existing definitions). Illustrate your solution by

extending Scheme’s + function (which adds numeric values) to include catenation of string

values (as in Java).

That is, after your extension (+ 1 2) should yield 3 while (+ "a" "b") should yield "ab" .

Recall that number? tests if a value is numeric, string? tests if a value is a string and

string-append catenates strings together.
-2-

5. (a) (14 points)

Write a Scheme function rm-dupl that is called as (rm-dupl L) . L is a list of atomic values

(numbers or symbols). rm-dupl removes duplicate values in L, returning a list in which each

value only appears once (the order of values is unimportant). For example

(rm-dupl '(1 2 3 4)) returns (1 2 3 4)
(rm-dupl '(1 1 1 1)) returns (1)
(rm-dupl '(a b c b c a)) returns (b c a)
Note that you don’t have to sort a list to remove duplicates within it.

(b) (5 points)

Extend your definition of rm-dupl to handle lists within L. That is, if the same list value

appears more than once in L, the duplicate copies should be removed. For example

(rm-dupl '((1) (1) 1 (2 1) (2 1) (1 2))) returns ((1) 1 (2 1) (1 2))

(c) (14 points)

Recall that future , delay or pcall may be used in MultiLisp to provide for parallel evalua-

tion or to avoid unnecessary evaluation. Use one (or more) of these features to improve the

execution speed of your implementation of rm-dupl (either version). In what way does your

use of these constructs speed execution?
-3-

	CS 538
	Midterm Exam
	1. (1 point)
	(a) a sideline
	(b) a side effect
	(c) a sideshow
	(d) a sidebar
	2. (a) (17 points)
	3. (a) (10 points)
	4. (a) (13 points) Assume we have a procedural language similar to C++ or Java. We aren’t exactly...
	5. (a) (14 points)

