
CS 538

Midterm Exam

Thursday, March 29, 2007

7:15 PM — 9:15 PM

Instructions
Answer question #1 and any three others. (If you answer more, only the first four will count.)
Point values are as indicated. Please try to make your answers neat and coherent. Remember, if
we can’t read it, it’s wrong. Partial credit will be given, so try to put something down for each
question (a blank answer always gets 0 points!).

1. (1 point)
DrScheme is an interactive program development environment for what programming
language?
(a) Jovial
(b) Spitbol
(c) Corc
(d) Scheme
(e) Oak

2. (a) (16 points)
It is often the case that subprograms are called with some arguments that are constants rather
than variables. In what ways can the execution of a subprogram be improved if it is known that
a particular parameter will always be a given constant parameter? Are the improvements you
propose safe? That is, will your “improved” subprogram always compute the same result as
the original subprogram?

(b) (17 points)
In MultiLisp we can use pcall to specify that the function and parameters in a call are to be
evaluated in parallel. Is it safe to convert every function call into a pcall? If so, explain why.
If not, how can a programmer decide which calls are appropriate for conversion into pcalls?

3. (a) (15 points)
Let L be a list of distinct atomic values (symbols or numbers). Write a Scheme function
(perm L) that returns a list of sublists, each of which is a permutation of L. For example,
(perm '(a b c)) might return ((a b c) (b a c) (b c a) (a c b) (c a b) (c b a)).
The order in which permutations of L appear is unimportant, but if L contains n values, then
(perm L) should return a list containing the n! permutations of L.
(perm ()) should return (()).

(b) (18 points)
Transform your Scheme version of perm into a MultiLisp program by adding pcalls and
futures where appropriate.
Explain why you added each pcall or future.
Do not add pcalls or futures that do not contribute any significant concurrency.

4. (a) (5 points)
Scheme’s map function, called as (map function list) applies its function argument to
each element of its list argument producing a list of results. The i-th element of the output list
is the result of applying the function to the i-th element of the input list. However, the exact
order in which the function is applied to list elements (left-to-right, right-to-left, or some other)
is unspecified.

Write a simple Scheme function that uses map that will expose the order in which map applies
its function to list elements. Indicate how the output produced by the function you provide will
answer our ordering question.

(b) (14 points)
map normally applies one function to a list of parameter values. Assume we want a variant of
map, called mapF, that applies a list of functions to a single parameter value. For example, given
 (define (add1 v) (+ v 1))
 (define (add2 v) (+ v 2))
 (define (add3 v) (+ v 3))
the call (mapF (list add1 add2 add3) 10) produces (11 12 13).
Give Scheme code that defines mapF.

(c) (14 points)
Now let us consider a version of map called mapFL that takes a list of functions and a list of
parameter values. That is, (mapFL FunL L) takes the first function in FunL and applies it to
each value in L, forming a list of results. This list is then appended to a list of results formed by
applying the second function in FunL to the values in L. Then the third function in FunL is
applied to L, etc., until all functions in FunL have been applied to L. For example,
(mapFL (list add1 add2 add3) '(10 11 12)) produces (11 12 13 12 13 14 13
14 15).
Give Scheme code that defines mapFL.

5. (a) (8 points)
What is a current continuation? What does the current continuation bound to k in the following
call do?
(+ (* 2 5) (call/cc (lambda (k) (k 7))))

(b) (25 points)
The following Scheme function prints an infinite sequence of integers starting at 1:
(define (GenInts)
 (let loop ((I 1))
 (display I)
 (loop (+ I 1))
)
)
Harry Hacker decides to change GenInts into a coroutine that can be resumed when needed
to produce the next integer in sequence. GenInts will return a pair: the desired integer and a
continuation that can resume the co-routine:
-2-

(define (GenInts)
 (let loop ((I 1))
 (call/cc (lambda (k) (cons I k)))
 (loop (+ I 1))
)
)
Unfortunately, Harry must have been dozing in class the day continuations were discussed
because his code doesn’t work! What is wrong?
How must GenInts be changed to correctly operate as a coroutine?
-3-

	CS 538
	Midterm Exam
	Thursday, March 29, 2007
	7:15 PM - 9:15 PM
	Answer question #1 and any three others. (If you answer more, only the first four will count.) Point values are as indicated. Pl...
	1. (1 point)
	(a) Jovial
	(b) Spitbol
	(c) Corc
	(d) Scheme
	(e) Oak
	2. (a) (16 points)
	3. (a) (15 points)
	4. (a) (5 points)
	5. (a) (8 points)

