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Reading Assignment
Read “An Efficient Method of
Computing Static Single Assignment
Form.”
(Linked from the class Web page.)

431CS 701  Fall 2001
©

How Good Is Iterative Data
Flow Analysis?

A single execution of a program will
follow some path
  b0,bi1,bi2,...,bin.

The Data Flow solution along this
path is
fin(...fi2(fi1(f0(T)))...) ≡ f(b0,b1,...,bin)

The best possible static data flow
solution at some block b is computed
over all possible paths from b0 to b.

Let Pb = The set of all paths from b0
to b.

∧
p  Pb

f(p)
∈

MOP(b)=
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Any particular path pi from b0 to b is
included in Pb.

Thus MOP(b) ∧ f(pi) = MOP(b) ≤ f(pi).

This means MOP(b) is always a safe
approximation to the “true” solution
f(pi).
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If we have the distributive property
for transfer functions,
f(a∧b) = f(a) ∧ f(b)
then our iterative algorithm always
computes the MOP solution, the best
static solution possible.
To prove this, note that for trivial
path of length 1, containing only the
start block, b0, the algorithm
computes f0(T) which is MOP(b0)
(trivially).
Now assume that the iterative
algorithm for paths of length n or
less to block c does compute MOP(c).
We’ll show that for paths to block b
of length n+1, MOP(b) is computed.
Let P be the set of all paths to b of
length n+1 or less.
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The paths in P end with b.
MOP(b) = fb(f(P1))∧fb(f(P2) ∧ ...

 where P1, P2, ... are the prefixes (of
length n or less) of paths in P with b
removed.
Using the distributive property,
fb(f(P1))∧fb(f(P2) ∧ ... =

fb(f(P1)∧f(P2)∧...).

But note that f(P1)∧f(P2)∧... is just
the input to fb in our iterative
algorithm, which then applies fb.

Thus MOP(b) for paths of length n+1
is computed.
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For data flow problems that aren’t
distributive (like constant
propagation), the iterative solution is
≤ the MOP solution.
This means that the solution is a safe
approximation, but perhaps not as
“sharp” as we might wish.
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Exploiting Structure in Data
Flow Analysis

So far we haven’t utilized the fact
that CFGs are constructed from
standard programming language
constructs like IFs, Fors, and Whiles.
Instead of iterating across a given
CFG, we can isolate, and solve
symbolically, subgraphs that
correspond to “standard”
programming language constructs.
We can then progressively simplify
the CFG until we reach a single node,
or until we reach a CFG structure that
matches no standard pattern.
In the latter case, we can solve the
residual graph using our iterative
evaluator.
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Three Program-Building
Operations
1. Sequential Execution (“;”)
2. Conditional Execution (If, Switch)
3. Iterative Execution

   (While, For, Repeat)
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Sequential Execution
We can reduce a sequential “chain” of
basic blocks:

into a single composite block:

The transfer function of bseq is

 fseq = fn ο fn-1 ο ... f1
where ο is functional composition.

b1 b2 bn
. . .

bseq
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Conditional Execution
Given the basic blocks:

we create a single composite block:

The transfer function of bcond is

 fcond = fL1 ο fp ∧ fL2 ο fp

bp

bL1 bL2

bcond
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Iterative Execution
Repeat Loop
Given the basic blocks:

we create a single composite block:

Here bB is the loop body, and bC is the
loop control.

bB

bC

b repeat
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If the loop iterates once, the transfer
function is fC o fB.

If the loop iterates twice, the transfer
function is (fC ο fB) ο (fC ο fB).

Considering all paths, the transfer
function is (fC ο fB) ∧ (fC ο fB)2 ∧ ...

Define fix f ≡ f ∧ f2 ∧ f3 ∧ ...
The transfer function of repeat is
then
 frepeat = fix(fC ο fB)
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While Loop.
Given the basic blocks:

we create a single composite block:

Here again bB is the loop body, and bC
is the loop control.
The loop always executes bC at least
once, and always executes bC as the
last block before exiting.

bC

bB

bwhile
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The transfer function of a while is
therefore
 fwhile = fC ∧ fix(fC ο fB) ο fC
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Evaluating Fixed Points
For lattices of height H, and
monotone transfer functions, fix f
needs to look at no more than H
terms.
In practice, we can give fix f an
operational definition, suitable for
implementation:
Evaluate
 (fix f)(x) {
   prev = soln = f(x);
   while (prev ≠ new = f(prev)){
      prev = new;
      soln = soln ∧ new;
   }
   return soln;
 }
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Example—Reaching Definitions

The transfer functions are either
constant-valued (f1={b1}, f4={b4},
f5={b5}) or identity functions
(f2=f3=f6=f7=Id).

←x

1

2

7 3

5

6

x ←

←x
4
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First we isolate and reduce the
conditional:
fC = f4 ο f3 ∧ f5 ο f3 =
{b4} ο Id U {b5} ο Id = {b4,b5}

←x

1

2

7 3

5

6

x ←

←x
4
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Substituting, we get

We can combine bC and b6, to get a
block equivalent to bC. That is,

f6 ο fC = Id ο fC = fC

1

2

7 C

6

x ←
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We now have

We isolate and reduce the while loop
formed by b2 and bC, creating bW.
The transfer function is
 fW = f2 ∧ (fix(f2 ο fC) o f2=

 Id U (fix(Id ο fC ) ο Id =

 Id U (fix(fC)) =

 Id U (fC ∧ fC
2 ∧ fC

3 ∧ ...) =

 Id U {b4,b5}

1

2

7 C

x ←
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We now have

We compose these three sequential
blocks to get the whole solution, fP.

fP = Id ο (Id U {f4,f5}) ο {b1} =

 {b1,b4,b5}.
These are the definitions that reach
the end of the program.
We can expand subgraphs to get the
solutions at interior blocks.

1

W

7

x ←
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Thus at the beginning of the while,
the solution is {b1}.
At the head if the If, the solution is
 (Id U (Id ο fC ο Id) U

(Id ο fC ο Id ο fC ο Id) U ... )({b1}) =
{b1} U {b4,b5} U {b4,b5} U ... =
    {b1,b4,b5}
At the head of the then part of the If,
the solution is Id({b1,b4,b5}) =
{b1,b4,b5}.
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Static Single Assignment Form
Many of the complexities of
optimization and code generation
arise from the fact that a given
variable may be assigned to in many
different places.
Thus reaching definition analysis
gives us the set of assignments that
may reach a given use of a variable.
Live Range Analysis must track all
assignments that may reach a use of
a variable and merge them into the
same live range.
Available Expression Analysis must
look at all places a variable may be
assigned to and decide if any kill an
already computed expression.
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What If
each variable is assigned to in only
one place?
(Much like a named constant).
Then for a given use, we can find a
single unique definition point.
But this seems impossible for most
programs—or is it?
In Static Single Assignment (SSA)
Form each assignment to a variable, v,
is changed into a unique assignment
to new variable, vi.

If variable v has n assignments to it
throughout the program, then (at
least) n new variables, v1 to vn, are
created to replace v. All uses of v are
replaced by a use of some vi.
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Phi Functions
Control flow can’t be predicted in
advance, so we can’t always know
which definition of a variable reached
a particular use.
To handle this uncertainty, we create
phi functions.
As illustrated below, if vi and vj both
reach the top of the same block, we
add the assignment
 vk ← φ(vi,vj)

to the top of the block.
Within the block, all uses of v become
uses of vk (until the next assignment
to v).
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What does φ(vi,vj) Mean?

One way to read φ(vi,vj) is that if
control reaches the phi function via
the path on which vi is defined, φ
“selects” vi; otherwise it “selects” vj.

Phi functions may take more than 2
arguments if more than 2 definitions
might reach the same block.
Through phi functions we have simple
links to all the places where v receives
a value, directly or indirectly.
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Example
x=1

a=x x=2

b=x

x=1

x==10

c=x
x++

print x

x1=1

a=x1 x2=2

b=x3

x4=1

x5==10

c=x5
x6=x5+1

print x5

x3=φ (x1,x2)

x5= (x4,x6)φ

Original CFG CFG in SSA Form
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In SSA form computing live ranges is
almost trivial. For each xi include all
xj variables involved in phi functions
that define xi.

Initially, assume x1 to x6 (in our
example are independent). We then
union into equivalence classes xi
values involved in the same phi
function or assignment.
Thus x1 to x3 are unioned together
(forming a live range). Similarly, x4 to
x6 are unioned to form a live range.


