Reading Assignment Read "An Efficient Method of Computing Static Single Assignment Form." (Linked from the class Web page.)

Any particular path p_i from b_0 to b is included in P_b .

Thus MOP(b) \land f(p_i) = MOP(b) \le f(p_i).

This means MOP(b) is *always* a safe approximation to the "true" solution $f(p_i)$.

How Good Is Iterative Data Flow Analysis?

A single execution of a program will follow some path $b_0, b_{i_1}, b_{i_2}, \dots, b_{i_n}$.

The Data Flow solution along this path is

 $f_{i_{1}}(...f_{i_{2}}(f_{i_{1}}(f_{0}(T)))...) \equiv f(b_{0},b_{1},...,b_{i_{n}})$

The best possible static data flow solution at some block b is computed over all possible paths from b_0 to b.

Let P_b = The set of all paths from b_0 to b.

$$MOP(b) = \bigwedge_{p \in P_b} f(p)$$

CS 701 Fall 2001

430

If we have the distributive property for transfer functions,

 $f(a \land b) = f(a) \land f(b)$

then our iterative algorithm *always* computes the MOP solution, the best static solution possible.

To prove this, note that for trivial path of length 1, containing only the start block, b_0 , the algorithm computes $f_0(T)$ which is MOP(b_0) (trivially).

Now assume that the iterative algorithm for paths of length n or less to block c *does* compute MOP(c).

We'll show that for paths to block b of length n+1, MOP(b) is computed. Let P be the set of all paths to b of

Let P be the set of all paths to b of length n+1 or less.

Exploiting Structure in Data Flow Analysis

So far we haven't utilized the fact that CFGs are constructed from standard programming language constructs like IFs, Fors, and Whiles.

Instead of iterating across a given CFG, we can isolate, and solve symbolically, subgraphs that correspond to "standard" programming language constructs.

We can then progressively simplify the CFG until we reach a single node, or until we reach a CFG structure that matches no standard pattern.

In the latter case, we can solve the residual graph using our iterative evaluator.

Three Program-Building Operations

- 1. Sequential Execution (";")
- 2. Conditional Execution (If, Switch)
- 3. Iterative Execution (While, For, Repeat)

436

Evaluating Fixed Points

For lattices of height H, and monotone transfer functions, fix f needs to look at no more than H terms.

In practice, we can give fix f an operational definition, suitable for implementation:

Evaluate

```
(fix f)(x) {
    prev = soln = f(x);
    while (prev ≠ new = f(prev)){
        prev = new;
        soln = soln ∧ new;
    }
    return soln;
}
```


What If

each variable is assigned to in only one place?

(Much like a named constant).

Then for a given use, we can find a single *unique* definition point.

But this seems *impossible* for most programs—or is it?

In *Static Single Assignment* (SSA) Form each assignment to a variable, v, is changed into a unique assignment to new variable, v_i.

If variable v has n assignments to it throughout the program, then (at least) n new variables, v_1 to v_n , are created to replace v. All uses of v are replaced by a use of some v_i .

Static Single Assignment Form

Many of the complexities of optimization and code generation arise from the fact that a given variable may be assigned to in *many* different places.

Thus reaching definition analysis gives us the *set* of assignments that *may* reach a given use of a variable.

Live Range Analysis must track *all* assignments that may reach a use of a variable and merge them into the same live range.

Available Expression Analysis must look at *all* places a variable may be assigned to and decide if any kill an already computed expression.

CS 701 Fall 2001

Phi Functions

Control flow can't be predicted in advance, so we can't always know which definition of a variable reached a particular use.

To handle this uncertainty, we create *phi functions*.

As illustrated below, if v_i and v_j both reach the top of the same block, we add the assignment

 $v_k \leftarrow \phi(v_i, v_j)$

to the top of the block.

Within the block, all uses of v become uses of v_k (until the next assignment to v).

What does $\phi(v_i, v_j)$ Mean?

One way to read $\phi(v_i,v_j)$ is that if control reaches the phi function via the path on which v_i is defined, ϕ "selects" v_i ; otherwise it "selects" v_i .

Phi functions may take more than 2 arguments if more than 2 definitions might reach the same block.

Through phi functions we have simple links to all the places where v receives a value, directly or indirectly.

CS 701 Fall 2001

In SSA form computing live ranges is almost trivial. For each x_i include all x_j variables involved in phi functions that define x_i .

Initially, assume x_1 to x_6 (in our example are independent). We then union into equivalence classes x_i values involved in the same phi function or assignment.

Thus x_1 to x_3 are unioned together (forming a live range). Similarly, x_4 to x_6 are unioned to form a live range.

CS 701 Fall 2001