
15
Code Generation

In this chapter we will explore how intermediate forms, like JVM bytecodes, are

translated into executable form. Collectively, this process is called code genera-
tion, though code generation actually involves a number of individual tasks that

must be handled.

Translation has already been done by code generation subroutines associated

with AST nodes (Chapters 12 to 14). Source level constructs have been trans-

formed in bytecodes. Bytecodes may be interpreted by a byte code interpreter.

Alternatively, we may wish to complete the translation process and produce

machine instructions native to the computer we are using.

The first problem we will face is instruction selection. Instruction selection is

highly target machine dependent; it involves choosing a particular instruction

sequence to implement a given JVM bytecode. Even for a simple bytecode we may

have a choice of possible implementations. For example, an iinc instruction, that

adds a constant to a local variable, might be implemented by loading a variable

into a register, loading the constant into a second register, doing a register to regis-

ter add, and storing the result back into the variable. Alternatively, we might

choose to keep the variable in a register, allowing implementation using only a sin-

gle add immediate instruction.

Besides instruction selection, we must also deal with register allocation and

code scheduling. Register allocation aims to use registers effectively, by minimizing

register spilling (storing a value held in a register and reloading the register with
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2 Chapter 15 Code Generation
something else). Even a few unnecessary loads and stores can significantly reduce

the speed of an instruction sequence. Code scheduling worries about the order in

which generated instructions are executed. Not all valid instruction ordering are

equally good—some incur unnecessary delays that must be avoided.

We shall first consider how bytecodes may be efficiently translated to

machine-level instructions. Techniques that optimize the code we generate will be

considered next, especially the translation of expressions in tree forms. A variety

of techniques that support efficient use of registers, especially graph coloring will

be discussed. Approaches to code scheduling will next be studied. Techniques that

allow us to easily and automatically retarget a code generator to a new computer

will then be discussed. Finally, a form of optimization that is particularly useful at

the code generation level—peephole optimization—will be studied.

15.1 Translating Bytecodes
We will first consider how to translate the bytecodes generated by the translation

phase of our compiler into conventional machine code. Many different machine

instruction sets exist; one for each computer architecture. Examples include the

Intel x86 architecture, the SPARC, the Alpha, the Power PC, and the MIPS.

In this chapter we’ll use the MIPS R3000 instruction set. This architecture is

clean and easy to use and yet represents well the current generation of RISC archi-

tectures. The MIPS R3000 also is supported by SPIM [Lar 93] a widely-available

MIPS interpreter written in C.

Most bytecodes map directly into one or two MIPS instructions. Thus an

iadd instruction corresponds directly to the MIPS add instruction. The biggest

difference in the design of bytecodes and the MIPS (or any other modern architec-

ture) is that bytecodes are stack-oriented whereas the MIPS is register-oriented.

The most obvious approach to handling stack based operands is to load top of

stack values into registers when they are used, and to push registers onto the stack

when values are computed. This unfortunately is also one of the worst
approaches. The problem is that explicit pop and push operations imply memory

load and store instructions which can be slow and bulky.

Instead, we’ll make a few simple, but important, observations on how stack

operands are used. First, note that no operands are left on the stack between

source-level statements. If they were, a statement, placed in a loop, could cause

stack overflow. Thus the stack is used only to hold operands while parts of a state-

ment are executed. Moreover, each stack operand is “touched” twice—when it is

created (pushed) and when it is used (popped).

These observations allow us to map stack operands directly into registers—no

pushes or pops of the run-time stack are really needed. We can imagine the JVM

operand stack as containing register names rather than values. When a particular

value is at the top of the stack, we’ll use the corresponding “top register” as the

source of our operand. This may seem complex, but it really is quite simple. Con-

sider the Java assignment statement a = b + c - d; (where a, b, c and d are inte-

ger locals). The corresponding bytecodes are



15.1 Translating Bytecodes 3
iload 2 ; Push int b onto stack

iload 3 ; Push int c onto stack

iadd ; Add top two stack values

iload 4 ; Push int d onto stack

isub ; Subtract top two stack values

istore 1 ; Store top stack value into a

Whenever a value is pushed, we will create a temporary location to hold it.

This temporary location (usually just called a temporary) will normally be allo-

cated to a register. We’ll track the names of the temporaries associated with stack

locations as bytecodes are processed. At any point, we’ll know exactly what tem-

poraries are logically on the stack. We say logically, because these values aren’t

pushed and popped at run time. Rather, values are directly accessed from the regis-

ters that hold them.

Continuing with our example, assume a, b, c and d are assigned frame offsets

12, 16, 20 and 24 respectively (we’ll discuss memory allocation for locals and

fields below). These four variables are given offsets because, as discussed in Chap-

ter 11, local variables in a procedure or method are allocated as part of a frame—

a block of memory allocated (on the run-time stack) whenever a call is made. Thus

rather than push or pop individual data values, as bytecodes do, we prefer to push

a single large block of memory once per call.

Let’s assume the temporaries we allocate are MIPS registers, denoted $t0 ,

$t1 , .... Each time we generate code for a bytecode that pushes a value onto the

stack, we’ll call getReg (Section 15.3.1) to allocate a result register. Whenever we

generate MIPS code for a bytecode that accesses stack values, we’ll use the regis-

ters already allocated to hold stack values. The net effect is to use registers rather

than stack locations to hold operands, which yields fast and compact instruction

sequences. For our above example we might generate

lw $t0,16($fp) # Load b, at 16+$fp, into $t0

lw $t1,20($fp) # Load c, at 20+$fp, into $t1

add $t2,$t0,$t1 # Add $t0 and $t1 into $t2

lw $t3,24($fp) # Load d, at 24+$fp, into $t3

sub $t4,$t2,$t3 # Subtract $t3 from $t2 into $t4

sw $t4,12($fp) # Store result into a, at 12+$fp

The lw instruction loads a word of memory into a register. Addresses of locals

are computed relative to $fp , the frame pointer, which always points to the cur-

rently active frame. Similarly, sw stores a register into a word of memory. add and

sub  add (or subtract) two registers, putting the result into a third register.

Bytecodes that push constants, like bipush n , can be implemented as a load

immediate of a literal into a register. As an optimization, we can delay doing the

actual load until we’re sure it is needed. That is, we note that a stack location,

associated with a MIPS register, will hold a known literal value. When that register

is used, we may be able to replace the register with the value it must hold (for

example, replacing a register to register add, with an add immediate instruction).
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Allocating memory addresses. As we learned in Chapter 11, local variables and

parameters are allocated in the frame associated with a procedure or method.

Thus we must map each JVM local variable into a unique frame offset, used to

address the variable in load and store instructions. Since a frame contains some

fixed-size control information followed by local data, a simple formula like offset
= const + size * index suffices, where index is the JVM index assigned to a vari-

able, size is the size (in bytes) of each stack value, const is the size (in bytes) of the

fixed-size control area in the frame, and offset is the frame offset used in generated

MIPS code.

Static fields of classes are assigned fixed, static addresses when a class is com-

piled. These addresses are used whenever a static field is referenced. Instance fields

are accessed as an offset relative to the beginning of a class. Thus if we had a class

Complex  defined as
class Complex { float re; float im;}

the two fields re and im , each one word in size, would be given offsets of 0 (for

re ) and 4 (for im ) within instances of the class. The bytecode getfield Com-
plex/im fetches field im of the Complex object referenced by the top of stack.

Translation is easy. We first lookup the offset of field im in class Complex , which

is 4. The reference to the referenced object is in the register corresponding to top-

of-stack, say $t0 . We could add 4 to $t0 , but since the MIPS has an indexed

addressing mode that adds a constant to a register automatically (denoted

const($reg) ), we need generate no code. We simply generate lw $t1,4($t0) .

which loads the field into register $t1 , which now corresponds to the top of stack.

Allocating Arrays and Objects. In Java, and hence in the JVM, all objects are allo-

cated on the heap. To translate a new or newarray bytecode, we’ll need to call a

heap-allocation subroutine, like malloc in C. We pass the size of the object

required and receive a pointer to a newly allocated block of heap memory. For a

new bytecode the size required is determined by the number and size of the fields

in the object. In addition, a fixed-size header (to store the size and type of the

object) is required. The overall memory size needed can be computed when the

class definition of the object is compiled. In our earlier example of a Complex
object, the size required would be 8 bytes plus 2 or 4 bytes of header information.

For newarray we determine the size required by multiplying the number of

elements requested (in the register corresponding to the top of stack) by size

requirement for individual array elements (stored in the symbol table entry for the

requested class). Again, space for a fixed-size object header must be included.

Default initialization of fields within objects must also be performed by clear-

ing or copying appropriate bit patterns (based on type declarations).

In languages like C and C++, objects and arrays can be allocated “inline” in

the current frame if their size is known at compile-time. We can do a similar allo-

cation within the current frame if we know that no reference to the allocated

object “escapes.” That is, if no reference to the allocated object or array is

assigned to a field or returned as a function value, then the object or array is no
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longer accessible after the current method (and its corresponding frame) are termi-

nated.

As a further optimization, string objects (which are immutable) are often

defined to be a string literal. Space for such a string may be allocated statically,

and accessed via a fixed static address.

In the JVM array elements are accessed or updated using a single bytecode

(e.g., iaload and iastore for integer arrays). In conventional architectures, like

the MIPS, several instructions are needed to access an array, especially if array

bounds checking is included. Details of array indexing are discussed in Chapter

14. Here we’ll just show the kind of code that is needed to implement a JVM array

load or store instruction.

An iaload instruction expects an array index at the top of the stack, and an

array reference at the top-1 position. In our implementation, both of these values

will be loaded or evaluated into MIPS registers. Let’s call these registers $index
and $array . We will need to generate code to check that $index is a legal index,

and then to actually fetch the desired integer value from the array. Since arrays are

just objects, the size of the array, and the array elements, are at fixed offsets rela-

tive to the start of the array object. Assume the array size is at offset SIZE and

that elements are at offset OFFSET. Then the following MIPS code can be used to

implement iaload , leaving the array value in register $val. (For simplicity and

efficiency, we’ll assume a null reference is represented by an invalid address that

will force a memory fault.)

bltz $index,badIndex # Branch to badIndex if $index<0

lw $temp,SIZE($array) # Load size of array into $temp

slt $temp,$index,$temp # $temp = $index < size of array

beqz $temp,badIndex # Branch to badIndex if

# $index >= size of array

sll $temp,$index,2 # multiply $index by 4 (size of

# an int) using a left shift

add $temp,$temp,$array # Compute $array + 4*$index

lw $val,OFFSET($temp) # Load word at

# $array + 4*$index + OFFSET

The register $temp is a work register, used within the code sequence to hold inter-

mediate values (see Section 15.3.1). The iastore instruction is very similar. A

value at top-2 (in $val ) is stored in the array referenced at top-1 ($array ) using

the index at the top of the stack ($index ). We can use the following code to

implement an iastore  instruction

bltz $index,badIndex # Branch to badIndex if $index<0

lw $temp,SIZE($array) # Load size of array into $temp

slt $temp,$index,$temp # $temp = $index < size of array

beqz $temp,badIndex # Branch to badIndex if

# $index >= size of array

sll $temp,$index,2 # multiply $index by 4 (size of

# an int) using a left shift
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add $temp,$temp,$array # Compute $array + 4*$index

sw $val,OFFSET($temp) # Load $val into word at

# $array + 4*$index + OFFSET

The MIPS code we’ve chosen for array indexing looks rather complex and expen-

sive, especially since arrays are a very commonly used data structure. Part of this

complexity is due to the fact that we’ve included array bounds checking, as

required in Java. In C and C++, array bounds are rarely checked at run-time,

allowing for fast (and less secure!) code.

In many cases it is possible to optimize or entirely eliminate array bounds

checks. On architectures that support unsigned arithmetic, the check for an index

too large and the check for an index too small (less than zero) can be combined!

The trick is to do an unsigned compare between the array index and the array size.

A negative index will be equivalent to a very large unsigned value (since its left-

most bit will be one), making it greater than the array size.

In a for loop it is often possible to determine that a loop index is bounded by

known lower and upper bounds. With this information, arrays indexed by the

loop index may be known to be “in range,” eliminating any need for explicit

checking. Similarly, once an array bound is checked, subsequent checks of the

same bound are unnecessary until the index is changed. Thus in a[i] = 100-
a[i] , a[i]  needs to be checked only once.

If array bounds checks are optimized away, or simply suppressed, array index-

ing is much more efficient—typically three (or fewer) instructions (a shift (or mul-

tiply), an add, and a load or store). In the case that the array index is a compile-

time constant (e.g., a[100] ), we can reduce this to a single instruction by doing

the computation of size*index+offset at compile-time and using it directly in a

load or store instruction.

Method Calls. The JVM makes method calls very simple. Many of the details of a

call are hidden. In implementing an invokestatic or invokevirtual byte-

code, we must make such hidden details explicit.

Let’s look at invokestatic first. In the bytecode version of the call, param-

eters are pushed onto the stack, and a static method, qualified by its class and type

(to support overloading) is accessed. In our MIPS translation, the parameters will

be in registers, which is fine since that’s how most current architectures pass scalar

(word-sized) parameters.

We’ll need to guarantee that parameters are placed in the right registers. On

the MIPS, the first four scalar parameters are passed in registers $a0 to $a3 ;

remaining parameters and non-scalar parameters are pushed onto the run-time

stack. In our translation, we can generate explicit register copy instructions to

move argument values (already in registers) to the correct registers. If we wish to

avoid these extra copy instructions, we can compute the parameters directly into

the correct registers. This is called register targeting. Essentially, when the parame-

ter is computed, we mark the target register into which the parameter will be com-

puted to be the appropriate argument register. Graph coloring, as discussed in

Section 15.3.2, makes targeting fairly easy to do. For parameters that are to be
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passed on the run-time stack, we simply extend the stack (by adjusting the top-of-

stack register, $sp ) and then store excess parameters into the locations just added.

To transfer control to the subprogram, we issue a jal (jump and link) instruc-

tion. This instruction transfers control to the start of the method to be called

(using an address recorded when the subprogram was translated) and stores a

return address in the return address register, $ra .

Additional details must be handled to complete our translation of an

invokestatic instruction. Since at the point of call variable and expression val-

ues may be held in registers, these registers must be saved prior to execution of the

method. All registers that hold values that may be destroyed during the call (by the

instructions in the method body) are saved on the stack, and restored after the

method completes execution. Registers may be saved by the caller (these are caller-

save registers) or by the method to be called (these are callee-save registers). It

doesn’t really matter if the caller or callee does the saving (often both save selected

registers), but any register holding a program value needed after the call must be

protected.

If a non-local or global variable is held in a register, it must be saved, prior to

a call, in its assigned memory location. This guarantees that the subprogram will

see the correct value during the call. Upon return, registers holding non-local or

global variables must be reloaded since the subprogram may have updated their

values.

As an example, consider this function call a = f(i,2) ; a is a static field, f is

a static method and i is a local variable held in register $t0 , a caller-save register.

Assume that a storage temporary, assigned frame offset 32, is created to hold the

value of $t0 across the call. The following MIPS code is produced

move $a0,$t0 # Copy $t0 to parm register 1

li $a1,2 # Load 2 into parm register 2

sw $t0,32($fp) # Store $t0 across call

jal f # Call function f

# Function value is in $v0

lw $t0,32($fp) # Restore $t0

sw $v0,a # Store function value in a

When a method is called, space for its frame must be pushed, and the frame

and stack pointers must be properly updated. This is normally done in the pro-

logue of the called method, just before its body is executed. Similarly, after a

method is finished, its frame must be popped, and frame and stack pointers prop-

erly reset. This is done in the method’s epilogue, just before branching back to the

caller’s return address. The exact code sequences needed vary according to hard-

ware, and operating system conventions, but the following MIPS instructions can

be used to push, and later pop, a method’s frame. (The size of the frame,

frameSz , is determined when the method is compiled and all its local declara-

tions are processed; on the MIPS the run-time stack grows downward).

subi $sp,$sp,frameSz# Push frame on stack
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sw $ra,0($sp) # Save return address in frame

sw $fp,4($sp) # Save old frame pointer in frame

move $fp,$sp # Set $fp to access new frame

# Save callee-saved registers (if any) here

# Body of method is here

# Restore callee-saved registers (if any) here

lw $ra,0($fp) # Reload return address register

lw $fp,4($fp) # Reload old frame pointer

addi $sp,$sp,frameSz# Pop frame from stack

jr $ra # Jump to return address

To translate an invokevirtual instruction, we must implement a dynamic

dispatching mechanism. When a method Mof class C is called using invokevir-
tual , we will be given, as the first parameter, an object of class C or any subclass

of C. If M is redefined in the subclass (with exactly the same type as M in class C),

the redefined version of Mmust be called. How do we know which version of Mto

execute?

The first parameter, compiled into a register, is a pointer to an object of class C
or a subclass of C. To support garbage collection and heap management, each

heap object has a type code as part of its header. This type code can be used to

index into a dispatch table that contains the addresses of all methods the object

contains. If we assign to each method a unique offset, we can use M’s offset, in the

object’s dispatch table, to choose the correct method to execute.

Fortunately, it is often the case that class C has no subclasses that redefine M.

(e.g., if C or Mis private or final ). If dynamic loading of C is not possible, we

can select M’s implementation at compile-time, and generate code to call it directly,

without any table lookup overhead.

Example. As an example of the overall bytecode translation process, let us con-

sider the following simple method, stringSum . This method sums integers from

one to its parameter, limit , and returns a string representation of the sum:

public static String stringSum(int limit){

int sum = 0;

for (int i = 1; i <= limit; i++)

sum += i;

return Integer.toString(sum);

}

The following bytecodes implement stringSum :

iconst_0 ; Push 0

istore_1 ; Store into variable #1 (sum)

iconst_1 ; Push 1

istore_2 ; Store into variable #2 (i)
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goto L2 ; Go to end of loop test

L1: iload_1 ; Push var #1 (sum) onto stack

iload_2 ; Push var #2 (i) onto stack

iadd ; Add sum + i

istore_1 ; Store sum + i into var #1 (sum)

iinc 2 1 ; Increment var #2 (i) by 1

  L2: iload_2 ; Push var #2 (i)

iload_0 ; Push var #0 (limit)

if_icmple L1 ; Goto L1 if i <= limit

iload_1 ; Push var #1 (sum) onto stack

; Call toString

invokestatic java/lang/Integer/toString(int)

areturn ; Return String reference to caller

In analyzing stringSum , we see references to three local variables (including

the parameter). Adding in two words of control information, we conclude that a

frame size of 5 words (20 bytes) is required. limit will be placed at offset 8, sum
at offset 12, and i  at offset 16.

In the code we generate below, we will follow the MIPS convention that one

word function values, including object references, will be returned in register $v0 .

We will also exploit the fact that register $0 always contains a zero value. The

code we generate will begin with a method prologue (to push stringSum ’s

frame), then a line-by-line translation of its bytecodes, followed by an epilogue to

pop stringSum ’s frame and return to its caller.

subi $sp,$sp,20 # Push frame on stack

sw $ra,0($sp) # Save return address

sw $fp,4($sp) # Save old frame pointer

move $fp,$sp # Set $fp to access new frame

sw $a0,8($fp) # Store limit in frame

sw $0,12($fp) # Store 0 ($0) into sum

li $t0,1 # Load 1 into $t0

sw $t0,16($fp) # Store 1 into i

j  L2 # Go to end of loop test

L1: lw $t1,12($fp) # Load sum into $t1

lw $t2,16($fp) # Load i into $t2

add $t3,$t1,$t2 # Add sum + i into $t3

sw $t3,12($fp) # Store sum + i into sum

lw $t4,16($fp) # Load i into $t2

addi $t4,$t4,1 # Increment $t4 by 1

sw $t4,16($fp) # Store $t4 into i

  L2: lw $t5,16($fp) # Load i into $t5
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lw $t6,8($fp) # Load limit into $t6

sle $t7,$t5,$t6 # set $t7 = i <= limit

bnez $t7,L1 # Goto L1 if i <= limit

lw $t8,12($fp) # Load sum into $t8

move $a0,$t8 # Copy $t8 to parm register

jal String_toString_int_ # Call toString

# String ref now is in $v0

lw $ra,0($fp) # Reload return address

lw $fp,4($fp) # Reload old frame pointer

addi $sp,$sp,20 # Pop frame from stack

jr $ra # Jump to return address

15.2 Translating Expression Trees
So far, we have concentrated on generating code from ASTs. We now focus on

generating code from expression trees. In an expression tree interior nodes repre-

sent operators and leaves represent variables and constants. Many ASTs use this

format for expressions, so much of this discussion applies to ASTs too.

An expression tree may be traversed and translated in many different orders.

Normally, a depth-first, left-to-right traversal is used when translating expressions.

A depth-first, left-to-right traversal always produces a valid translation. However

alternative traversals may lead to better code (if exceptions, which must be tested

in source order, are not a concern).

Consider the expression (a-b) + ((c+d)+(e*f)) . The normal depth-first

traversal first translates (a-b) , leaving its result in a register. Then

(c+d)+(e*f) is translated, requiring three registers (one to hold the first subex-

pression, and two more to evaluate the other subexpression). Thus a total of four

registers is used. However, if the right subexpression, (c+d)+(e*f) , is evaluated

first, only three registers are needed, because once this subexpression is computed

its value can be held in one register, using the other two registers to compute (a-
b) .

We now consider an algorithm that determines the minimum number of regis-

ters needed to evaluate any expression or subexpression. We ignore for the

moment any special properties of operators, like associativity. The algorithm

labels each node in a tree with the minimum number of registers needed to evalu-

ate the subexpression rooted by that node. This labeling is called Sethi-Ullman

numbering [Sethi Ullman 70]. Once the minimum number of registers needed for

each expression and subexpression is known, we traverse the tree in a manner that

generates optimal code (that is, code that minimizes register use and hence register

spilling).

As we did in previous sections, we assume a MIPS-like machine model that

requires that all operands be register-resident. The algorithm works in a bottom-

up direction, first labeling leaves of the tree. All leaves are labeled with 1, since one
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register is needed to hold a variable or constant. For interior nodes, which are

assumed to be binary operators, the register requirements of the operands are con-

sidered. If both operands require r registers, the operator requires r+1 registers

because an operand, once computed, will be held in a register. If the two operands

require a different number of registers, the whole expression requires the same

number of registers as the more complex of the two operands. (Evaluate the more

complex operand first and save it in a register. The simpler operand needs fewer

registers, and hence the registers used for the previous, more complex operand can

be reused.) This analysis leads to the algorithm of Figure 15.1.

As an example of this algorithm, registerNeeds would label the expression

tree for (a-b) + ((c+d)+(e*f)) as shown in Figure 15.2 (regCount for each

node is shown at its bottom).

We can use the regCount labeling to drive a simple, but optimal, code genera-

tor, treeCg, defined in Figure 15.3. treeCG takes a labeled expression tree and a

 registerNeeds( T  )
1. if  T.kind = Identifier or T.kind = IntegerLiteral
2. then T.regCount ← 1
3. else registerNeeds(T.leftChild)
4. registerNeeds(T.rightChild)
5. if T.leftChild.regCount = T.rightChild.regCount
6. then T.regCount ← T.rightChild.regCount+1
7. else T.regCount ← max(T.leftChild.regCount,

T.rightChild.regCount)

Figure 15.1  An Algorithm to Label Expression Trees with Register Needs

Figure 15.2 Expression Tree for (a-b) + ((c+d)+(e*f))  with Register Needs.
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list of registers it may use. It generates code to evaluate the tree, leaving the result

of the expression in the first register on the list. If treeCG is given too few regis-

ters, it will spill registers, as necessary, into storage temporaries. (We use standard

list manipulation functions, like head and tail, without defining them.).

As an example, if we call treeCG with the labeled tree of Figure 15.2 and

three registers, ($10, $11  and $12) , we obtain the following code sequence:

lw $10,c # Load c into register 10

lw $11,d # Load d into register 11

add $10,$10,$11 # Compute c + d into register 10

lw $11,e # Load e into register 11

lw $12,f # Load f into register 12

mul $11,$11,$12 # Compute e * f into register 11

add $10,$10,$11 # Compute (c + d) + (e * f) into reg 10

 treeCG( T, regList )
1. r1 ← head(regList)
2. r2 ← head(tail(regList))
3. if T.kind = Identifier /* Load a variable */
4. then generate(lw, r1, T.IdentifierName)
5. elsif T.kind = IntegerLiteral /* Load a literal */
6. then generate(li, r1, T.IntegerValue)
7. else /* T.kind must be a binary operator */
8. left ← T.leftChild
9. right ← T.rightChild

10. if left.regCount ≥ length(regList) and
right.regCount ≥ length(regList)

11. then /* Must spill a register into memory */
12. treeCG(left, regList)
13. temp ← getTemp() /* Get memory location */
14. generate(sw, r1, temp)
15. treeCG(right, regList)
16. generate(lw, r2, temp)
17. freeTemp(temp) /* Free memory location */
18. generate(T.operation, r1, r2, r1)
19. else /* There are enough registers; no spilling is needed */
20. if left.regCount ≥ right.regCount
21. then treeCG(left, regList)
22. treeCG(right, tail(regList))
23. generate(T.operation, r1, r1, r2)
24. else treeCG(right, regList)
25. treeCG(left, tail(regList))
26. generate(T.operation, r1, r2, r1)

Figure 15.3  An Algorithm to Generate Optimal Code from Expression Trees
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lw $11,a # Load a into register 11

lw $12,b # Load b into register 12

sub $11,$11,$12 # Compute a - b into register 11

add $10,$11,$10 # Compute (a-b)+((c+d)+(e*f)) into reg 10

treeCG illustrates nicely the principle of register targeting. Code is generated

in such a way that the final result appears in the targeted register, without any

unnecessary moves.

Because our simple machine model requires that all operands be loaded into

registers, commutative operators (for which exp1 op exp2 is identical to exp2
op exp1 ) can’t be exploited to improve code quality. However, most computer

architectures aren’t entirely symmetric. Thus in the MIPS R3000 architecture,

some operations (like add and subtract) allow the right operand to be immediate.
Immediate operands are small literal values included directly into an instruction;

they need not be explicitly loaded into registers (see Exercise 8). For commutative

operators, a small literal used as a left operand can be treated as if it were a right

operand.

Some operations, like addition and multiplication are associative. Operands of

an associative operator may be processed in any order. Thus, mathematically,

a+b+c and c+b+a are identical. Regrouping operands of an associative operators

can reduce the number of registers needed to evaluate an expression (see Exercise

9). For example, using registerNeeds we can establish that (a+b)+(c+d)
requires three registers whereas a+b+c+d requires only two registers. Unfortu-

nately, because of overflow and rounding issues, computer arithmetic is often not
associative. Thus if a and b equal 1, c equals maxint , and d equals -10,

(a+b)+(c+d) will evaluate correctly, whereas a+b+c+d may overflow. Many

compilers reorder operands only when it is absolutely safe to do so.

15.3 Register Allocation and Temporary Management
An essential component of any code generator is its register allocator. Machine

registers must be assigned to program variables and expressions. Since registers

are limited in number, they must be reclaimed (reused) throughout a program.

A register allocator may be a simple “on the fly” algorithm that assigns and

reclaims registers as code is generated. We’ll consider on the fly techniques first.

More thorough register allocators, that consider the register needs of an entire

subprogram or program, will be considered next.

15.3.1 On the Fly Register Allocation
Most computers have distinct integer (general purpose) and floating register

sets. In organizing our register allocator, we’ll divide each register set into a num-

ber of classes:

• Allocatable registers

• Reserved registers
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• Work registers

Allocatable registers are explicitly allocated and freed by compile-time calls to

register management routines. While allocated, registers are protected from use by

any but the “owner” of the register. Thus it is possible to guarantee that a register

containing a data value will not be incorrectly changed by another use of the same

register.

Requests for allocatable registers are usually generic; that is, requests are for

any member of a register class, not for a particular register in that class. Usually

any member of a register class will do. Further, generic requests eliminate the

problem that arises if a particular requested register is already in use but many

other registers in the same class are available.

A register, once allocated, must be freed when its assignment to a particular

temporary is completed. A register is usually freed in response to an explicit direc-

tive issued by a semantic routine. This directive also allows us to mark the last use

of a register as dead. This is valuable information because better code may be pos-

sible if the contents of a register need not be preserved.

Reserved and work registers, on the other hand, are never explicitly allocated

or freed. Reserved registers are assigned a fixed function throughout a program.

Examples include display registers, stacktop registers, argument and return value

registers, as well as return address registers. Since the function of reserved registers

is set by the hardware or operating system, and they are in use for all of a program

or procedure, it is unwise to use such registers for other than their designated pur-

pose

Work registers may be used at any time by any code generation routine. Work

registers may safely be used only in local code sequences, over which the code gen-

erator has complete control. That is, if we were generating code to do an indexing

operation on an array (say, a[i+j] ), it would be wrong to use a work register to

hold the address of the array because computation of i+j might change the work

register. An allocatable register would, of course, be protected.

Work registers are useful in several circumstances:

• Sometimes we need a register for a very brief time. (For example, in compiling

a=b we load b into a register and then immediately store the register into a.)

Using a work register saves the overhead of allocating and then immediately

freeing a register.

• Many instructions require that their operands be in registers. What happens if

no registers are free? Work registers are always free. If necessary, we can load

values from memory into work registers, execute an instruction or two, then

save needed values back into memory.

• We can pretend we have more registers than we really do. Such registers,

sometimes called virtual registers or pseudo-registers, can be simulated by

allocating them in memory and placing their values into work registers when

they are used in instructions.

In general, reserved registers are identified in advance by hardware and oper-

ating systems conventions. Sometimes work registers are also established in
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advance—if they aren’t, choose three or four for this purpose. Remaining registers

can be made allocatable. They will hold temporary values, and may also be used

to hold frequently accessed variables and constants.

getReg and freeReg. To allocate and free registers, we’ll create two subroutines,

getReg and freeReg. getReg will allocate a single allocatable register and return

its index. (If we have both integer and float registers, we will create getReg and

getFloatReg.) A register allocated by a call to getReg is exclusively allocated to

the caller until it is returned.

What happens if no more registers are available for allocation? In simple com-

pilers we can simply terminate compilation with a message that the program

requires more registers than are available. Modern computers routinely have at

least 10–20 allocatable registers, so unless registers are used aggressively to hold

program variables and constants, the chances of a “real life” program exhausting

all allocatable registers is almost nil.

A more robust register allocator should not simply terminate when registers

are exhausted. It can instead return pseudo-registers allocated in memory (in the

frame of the procedure currently being translated). Pseudo-registers are encoded as

integers greater than the indices of the real hardware registers. An array

regAddr [] maps pseudo-registers into their memory addresses. Pseudo-registers

are used exactly like real registers. The only difference is that when instructions

using pseudo-registers are generated, they use work registers to move values back

and forth from memory.

In some languages we may need to allocate temporaries in memory rather

than registers. This may be because the temporary is too large to fit in a register

(e.g., a struct returned by a function call) or because we need to be able to create a

pointer to the temporary (most computers don’t allow indirect references to regis-

ters). If we need storage based temporaries, we can create getTemp and freeTemp
functions that essentially parallel getReg and freeReg. Temporaries allocated for

a procedure are placed in the procedure’s frame (essentially they are anonymous

local declarations). Temporaries used by the main program may be allocated stati-

cally.

In some languages we may need to allocate temporaries whose size is not

known at compile time. For example, if we use the + operator to concatenate C-

style strings, then the size of str1 + str2 will not in general be known until run-

time. The temporary used to hold the result of such an expression can’t be allo-

cated statically or in a frame. Instead, we’d either push it onto the run-time stack

or allocate space for it in the heap. Since pushing the stack is much more efficient

(two or three instructions rather than hundreds), it is preferred. Note that when

we return from the current procedure, the stack will be popped and the temporary

automatically freed.
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15.3.2 Register Allocation Using Graph Coloring
Using registers effectively is essential in generating efficient code for modern com-

puters. We have already studied how to allocate registers in trees and “on the fly”

as code is generated. In this section we address a greater challenge—how to allo-

cate registers effectively throughout an entire procedure, function or main pro-

gram. Since individual procedures and functions are the basic units of compilation

in modern compilers, we have raised our sights from individual statements or

expressions to entire procedure bodies.

Register allocation at the level of an entire subprogram is called global alloca-

tion, in contrast to allocation at the level of a single expression or basic block,

which is termed local allocation. At the global level, a register allocator usually

has many values that might profitably reside in registers (local and global vari-

ables, constants, temporaries containing available expressions, parameters and

return values, etc.). Each value that might profitably reside in a register is called a

register candidate; typically there are many more register candidates than there are

registers.

Global register allocators do not usually allocate a register to a single value

throughout the body of a subprogram. Rather, when possible, values that do not

interfere with one another are assigned to the same register. Thus if variable a is

used only at the top of a subprogram, and variable b is used only at the bottom on

the subprogram, a and b may share the same register.

To enhance sharing, register candidates are divided into live ranges. A live

range is the span of instructions in which a given value may be accessed, from its

initial creation to its last use. For variables, a live range runs from its point of ini-

tialization or assignment to its last uses. For expressions and constants, a live

range spans from their first to final use. Thus in Figure 15.4 variable a is broken

into two separate and independent live ranges. Each is treated as a separate regis-

ter candidate.

A live range can be readily computed using the SSA form described in Chapter

16, since each use of a variable is tied to unique assignment. Alternatively, one can

avoid live range computation and simply treat each variable, parameter or con-

stant as a distinct register candidate.

main() {

a = f(x); // Start of first live range

print(a); // End of first live range

....

a = g(y) // Start of second live range

print(a); // End of second live range

}

Figure 15.4  Example of Live Ranges
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The Interference Graph. One of the central problems in global register allocation is

deciding which live ranges may share the same register and which may not. A live

range l is said to interfere with another live range m if l’s definition point (or begin-

ning) is part of m’s range. This make sense—l and m cannot share the same regis-

ter if at the point l is first computed or loaded m is also in use.

To represent all the interferences in a subprogram (there normally are many),

an interference graph is built. Nodes of the graph are the live ranges of the subpro-

gram. An arc exists between live ranges l and m if l interferes with m or m inter-

feres with l (the arc is undirected). Consider the simple procedure shown in Figure

15.5. It has four register candidates, a, b, c , and i . a, b and i all interfere with

one another; c interferes only with a. This interference information is concisely

shown in the interference graph of Figure 15.6.

With an interference graph, the problem of allocating registers is neatly

reduced to a well-known problem—that of coloring the nodes of a graph. In the

graph coloring problem the goal is to determine whether n colors suffice to color a

graph given the rule that no two nodes linked by an arc may share the same color.

This models exactly our problem of register allocation, where n is the number of

registers we have available and each color represents a different register.

The problem of determining whether a graph is “n-colorable” is NP-complete

[Garey Johnson 79]. This means the best known algorithms that solve the problem

have a time bound that is exponential in the size of the graph. As a result, register

proc() {

a = 100;

b = 0;

for (i=0;i<10;i++)

b = b + i * i;

print(a, b);

c = 100;

print(a*c);

}

Figure 15.5  A Simple Procedure with Candidates for Global Register Allocation.

Figure 15.6 Interference Graph for procedure of Figure 15.5

cb a

i
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allocators based on graph coloring normally use heuristics to solve the coloring

problem.

We’ll first consider an approach to register allocation using coloring devised

by Chaitin [CAC 81, Cha 82]. Initially, the algorithm assumes that all register can-

didates can be allocated registers. This is often an impossible goal, so the interfer-

ence graph is tested to see if it is n-colorable, where n is the number of registers

available for allocation. If the interference graph is n-colorable, a register alloca-

tion is produced from the colors assigned to the interference graph.

If the graph is not n-colorable, it is simplified. A node (corresponding to a live

range) is selected and spilled. That is, the live range is denied a register. Rather,

whenever it is assigned to or used, it is loaded from or stored into memory using

work registers, like the pseudo-registers of the previous section.

Since the live range that was spilled is no longer a register candidate it is

removed from the interference graph. The graph is simpler and may now be n-col-

orable. If it is, our register allocation is successful—all remaining candidates can

be allocated registers. If the graph still isn’t n-colorable, we select and spill another

candidate, further simplifying the graph. This process continues until an n-color-

able graph is obtained.

Two questions arise. How do we decide if a graph is n-colorable? (Recall this

is a very hard problem). If a graph isn’t n-colorable, how do we choose the “right”

register candidate to spill?

In testing for n-colorability, Chaitin made the following simple but powerful

observation. If a node in the interference graph has fewer than n neighbors, that

node can always be colored (just choose any color not assigned to any of its neigh-

bors). Such nodes (termed unconstrained) are removed from the interference

graph. This simplifies the graph, often making further nodes unconstrained. Some-

times all nodes are removed, demonstrating that the graph is n-colorable.

When only nodes with n or more neighbors remain, a node is spilled to allow

the graph to be simplified. Chaitin suggests that in choosing a node to spill, two

criteria be considered. First, the cost of spilling a node should be considered. That

is, we compute the extra loads and stores that will have to executed should a live

range be spilled, weighted by the loop nesting level. Each level of loop nesting is

arbitrarily assumed to add a factor of 10 to costs. Thus a live range in a single

loop has its loads and stores multiplied by 10, a doubly nested loop multiplies

loads and stores by 100, etc.

The second criterion Chaitin used is the number of neighbors a node has. The

greater the number of neighbors a node has, the greater the number of interfer-

ences spilling the node removes. Chaitin suggests that the node with the smallest

value of cost/neighbors is the best node to spill. That is, the “ideal” node to spill is

one that has a low spill cost and many neighbors, yielding a very small cost/
neighbors value.

Chaitin’s algorithm is shown in Figure 15.7. As an example, consider the

interference graph of Figure 15.6. Assume only two registers are available for allo-

cation. Since c has only one neighbor, it is immediately removed from the graph

and pushed on a stack for later register allocation. a, b and i all have two neigh-
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bors. One will have to be spilled. a has a very low cost (3) because it is referenced

only 3 times, all outside of the loop. b and i are used inside the loop and have

much higher costs. Since all three nodes have the same number of neighbors, a is

correctly chosen as the proper node to spill. After a is removed, i and b become

unconstrained. When registers are assigned, i and b get different registers and c
can be assigned either register. a gets no register. Rather, whenever it is used, it is

loaded from or stored into a memory location, just like an ordinary variable.

Improvements to Graph Coloring Register Allocators. Briggs et al. [BCKT 89] suggest

a number of useful improvements to Chaitin’s approach. They point out that

nodes with the smallest number of neighbors ought to be removed first from the

interference graph. This is because nodes with few neighbors are the easiest to

color and hence they ought to be processed last during the phase in which stacked

nodes are popped and colored.

Another improvement follows from the observation that as nodes are

removed to simplify the interference graph, they need not be spilled immediately.

Rather, removed nodes should be stacked just like unconstrained nodes. When

nodes are colored, constrained nodes may be colorable (because they happen to

have neighbors that share the same color or happen to have neighbors that are

also marked to be spilled). Constrained nodes that can’t be colored are spilled only

when we are sure they are uncolorable.

Register allocators need to handle two other problems. Assignments between

register values are common. We would like to reduce register moves by assigning

the source and target values in the assignment to the same register, making the

assignment a trivial one. Moreover, architectural and operating system constraints

sometimes force values to be assigned to specific registers. We’d like our allocator

to try to choose register assignments that anticipate and adhere to predetermined

register conventions.

 GCRegAlloc( proc, regCount )
1. ig ← buildInterferenceGraph(proc)
2. stack ← φ
3. while ig ≠ φ
4. do if ∃ d ∈ ig for which neighborCount(d) < regCount
5. then ig ← ig - d
6. push(d,stack)
7. else Choose d such that

cost(d)/ neighborCount(d) is minimized
8. ig ← ig - d
9. Generate code to spill d’s live range

10. while stack ≠ φ
11. do d ← pop(stack)
12. reg(d) ← any register not assigned to neighbors(d)

Figure 15.7  Chaitin’s graph coloring register allocator.
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To see how coloring allocators can handle register moves and preallocated

registers, consider the following simple subprogram.

int doubleSum(int initVal, int limit({

int sum = initVal;

for (int i=1; i <= limit; i++)

sum += i;

return 2*sum; }

When this subprogram is translated, many short-lived temporary locations are cre-

ated. Moreover, rules involving register allocation for parameters and return val-

ues are enforced. Prior to register allocation, doubleSum  looks like the following

doubleSum(){

initVal = $a0; // First parm passed in $a0

limit = $a1; // Second parm passed in $a1

sum = initVal;

i = 1;

temp1 = i <= limit;

while (temp1) {

temp2 = sum + i;

sum = temp2;

temp3 = i + 1;

i = temp3;

temp1 = i <= limit; }

temp4 = 2 * sum;

$v0 = temp4; // Return value register is $v0

}

The explicit use of register names in doubleSum represents nodes that must be

allocated a particular register; these nodes are said to be precolored. If a and b are

both allocated to registers, and we have the assignment a = b , an explicit register

copy can be avoided if a and b are allocated to the same register. Values a and b
will be automatically assigned to the same register if we coalesce their live ranges.

That is, if we combine the nodes for a and b in the interference graph, then a and

b must receive the same register.

When is coalescing a and b safe? At a minimum, they must not interfere. If

they do interfere, then they are live at the same time and will need distinct regis-

ters. Even if a and b do not interfere, coalescing them may be problematic. The

difficulty is that combining the live ranges of a and b will in general create a larger

live range that is harder to color. We certainly don’t want to spill a combined

range when the individual ranges might have been individually colored.

To avoid problems in coloring coalesced interference graph nodes we can

adopt a conservative approach. We will say a node in an interference graph has



15.3 Register Allocation and Temporary Management 21
significant degree if it has n or more neighbors (where n is the number of colors

available). A node of significant degree may have to be spilled. A node that is

insignificant (i.e., not significant) is always colorable. We can conservatively coa-

lesce nodes a and b if the combined interference graph node has fewer than n sig-

nificant neighbors. Why? Well, insignificant neighbors are always removed

because they are trivially colorable. If the combined node has fewer than n signifi-

cant neighbors, then, after insignificant neighbors are removed, the combined

node will have fewer than n neighbors, so it too will be trivially colorable.

In our above doubleSum example, we have three values that must be register-

resident (the two parameter values at the start, and the return value at the end).

We have eight local variables and temporaries (initVal , limit , i , sum, temp1 ,

temp2 , temp3 and temp4 ). We’ll aim for a 4-coloring (a register allocation that

uses 4 registers). Temporary temp1 interferes with i , limit and sum, so we

know that we can’t use fewer than 4 registers without spilling.

We can coalesce temp4 and $v0 , guaranteeing that 2*sum is computed into

the return value register. We can coalesce $a0 and initVal , allowing initVal
to be accessed directly from $a0 throughout the subprogram. Even more interest-

ingly, we can then coalesce initVal and sum, allowing sum to use $a0 too. Tem-

porary temp2 can also be coalesced with sum, allowing it too to use $a0 . limit
can be coalesced with $a1 , allowing it to use $a1  throughout the subprogram.

Temporary temp3 can be coalesced with i since the combined node has fewer

than 4 neighbors. Since neither temp1 nor the combined i and temp3 interfere

with $v0 , either of these can be assigned $v0 to use. The other is assigned an

unused register, for example $t0 . The resulting register allocation, with register

names replacing variables and temporaries, is shown below. Note that all register

to register copies have been removed, and that only one register, beyond the preas-

signed ones, is used.

doubleSum(){

$v0 = 1;

$t0 = $v0 <= $a1;

while ($t0) {

$a0 = $a0 + $v0;

$v0 = $v0 + 1;

$t0 = $v0 <= $a1;

}

$v0 = 2 * $a0;

}

It is sometimes possible to coalesce interference graph nodes that have more than

n significant neighbors. This is done by iterating between interference graph sim-

plification and node coalescing [GA 96]. The resulting algorithm is very effective

and is one of the simplest and most effective register allocators in current use.
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n),
15.3.3 Priority Based Register Allocation
Hennessey and Chow [90] and Larus and Hilfinger [86] suggest interesting alter-

natives to Chaitin’s graph coloring approach. After unconstrained nodes (which

are trivially colorable) are removed from the interference graph, a priority is com-

puted for each remaining node. This priority is similar to Chaitin’s cost estimate,

except that it normalizes the cost using the size of the live range. That is, if two

live ranges have the same cost, but one is smaller (in terms of the number of

instructions it spans), the smaller live range ought to be given preference over the

larger one. This makes sense—the smaller the live range is, the shorter is the span

of instructions in which it “ties up” a register. The priority function recommended

is cost/size(live range). The greater the priority of a live range, the more likely it is

to receive a register.

Another important difference is that when a node can’t be colored (because its

neighbors have been allocated all the available colors), the node is split rather than

being spilled. That is, if possible, the live range is divided into two smaller live

ranges. Loads and stores are placed at the boundary of the split ranges, but each

split range may be allocated a (possibly different) register. Because split ranges

usually have fewer interferences than the original range, split ranges are often col-

orable when the original range is not.

There are many ways a live range may be split into smaller ranges. The fol-

lowing simple heuristic is often used:

1. Remove the first instruction of the live range (usually a load or computatio
putting it into a new live range,NR.

2. Move successors to instructions inNR from the original live range toNR as
long asNR remains colorable.

The idea is to break off at least one instruction, and then add instructions as

long as the split range appears colorable. Instructions not split off remain in

what’s left of the original live range, which may be split again. Single definitions or

uses that can’t be colored are spilled.

A priority-based register allocator, PriorityRegAlloc, is shown in Figure 15.8.

Reconsider the interference graph of Figure 15.6, assuming two registers, $r1 and

$r2 . Variable c is placed in unconstrained; it is trivial to color and will be han-

dled after all other variables have been allocated registers. a, b and i are all placed

in constrained. i has the highest priority for register allocation, since assigning it

a register saves 51 loads and stores, and it spans only two statements. Assume it is

assigned register $r1 . Variable b has the next highest priority (22 loads and stores

saved). It is given $r2 . Variable a is the last candidate in constrained, but it can’t

be colored. We split it into two smaller live ranges, a1 and a2 . a1 is the single

assignment at the top of the procedure. Range a2 spans the two print statements.

a1 is effectively spilled since its range is a single instruction. a2 interferes with b
but not i . Hence it receives $r1 . Finally, c  receives $r2 .
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15.3.4 Interprocedural Register Allocation
The global register allocators we have considered are limited by the fact that they

consider only one subprogram at a time. Interprocedural interactions are ignored.

Thus when a subprogram is called, either the caller or callee must save and restore

any registers that both might use. When registers are used aggressively to hold a

large number of variables, constants and expressions, saving and restoring com-

mon registers can make calls costly. Similarly, if a number of subprograms access

the same global variable, each must load and later save the value when it is used.

Interprocedural register allocation improves overall register allocation by

identifying and removing register conflicts across calls. Wall [86] considers inter-

procedural register allocation for architectures with a large number of registers.

His goal is to assign registers so that caller and callee never use the same register.

This guarantees that no saves or restores are needed during a call, making the call

very inexpensive.

First, a priority estimate, similar to that of the previous section, is computed

for each local variable or constant that might be kept in a register. These priorities

are weighted by estimates of the execution frequency of each procedure. That is,

 PriorityRegAlloc( proc, regCount )
1. ig ← buildInterferenceGraph(proc)
2. unconstrained ← { n ∈ nodes(ig)  neighborCount(n) < regCount }
3. constrained ← { n ∈ nodes(ig)  neighborCount(n) ≥ regCount }
4. while constrained ≠ φ
5. do for c ∈ constrained such that not colorable(c) and canSplit(c)
6. do c1, c2 ← split(c)
7. constrained ← constrained - c
8. if neighborCount(c1) < regCount
9. then unconstrained ← unconstrained + c1

10. else constrained ← constrained + c1
11. if neighborCount(c2) < regCount
12. then unconstrained ← unconstrained + c2
13. else constrained ← constrained + c2

for d ∈ neighbors(c) such that d ∈ unconstrained
and neighborCount(d) ≥ regCount

14. do unconstrained ← unconstrained - d
15. constrained ← constrained + d

/* At this point all nodes in constrained are colorable
or can’t be split */

16. Select p ∈ constrained such that priority(p) is maximized
17. if colorable(p)
18. then color p

else spill p
19. color all nodes in unconstrained

Figure 15.8  A priority-based graph coloring register allocator.
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variables used by frequently executed subroutines have a much higher priority

than those of infrequently executed subroutines. This is reasonable—we want to

use registers most effectively in those subprograms that are executed most often. If

procedure a calls b, the register allocator places the locals of a and b in different

registers. Otherwise, a local of a and a local of b can share a common register.

Groups of locals, one from each of a set of subprograms that can never be simulta-

neously active, are grouped together. The priority of a group is the sum of the pri-

orities of all its member locals.

Registers are then “auctioned.” The group with the highest overall priority

gets the first register. The next highest priority group gets the next register and so

forth. Global variables are handled by placing them in singleton groups, with a

priority equal to the total savings that result in all subprograms by having the glo-

bal register-resident.

Wall found improvements of from 10% to 28% in execution speed, while

from 83% to 99% of all dynamic memory references to data were removed. Since

Wall’s scheme eliminates all saving and restoring, it works best when a large num-

ber of registers are available for allocation (52 in his tests). When fewer registers

are available, saving and restoring must be included. Now the cost of giving a sub-

program an extra register is compared with the benefit of having that register

available for local use. If save-restore costs are less than the benefits, save and

restore code is added.

When interprocedural effects are accounted for, it is possible to assign regis-

ters and position save-restore code in such a way that optimal register allocation is

obtained [Kurlander Fischer 96]. The improvements in execution speed that result

can sometimes be dramatic.

Some architectures, most notably the SPARC, provide register windows.

When a call is made, the callee is provided its own “window” of registers, distinct

from the caller’s register window. This reduces the cost of calls as saving and

restoring of registers is done automatically. Register windows are allowed to par-

tially overlap to facilitate parameter passing through registers.

15.4 Code Scheduling
We have already discussed the issues of instruction selection and register allo-

cation in code generation. Modern computer architectures have introduced a new

problem—that of ordering (or scheduling) the instructions that are generated.

Most modern computer architectures are pipelined. This means that instructions

are processed in stages, with an instruction progressing from stage to stage until it

is completed. A number of instructions can be in different stages of execution at

the same time. This is very important since instruction execution overlaps, allow-

ing much faster execution speeds.

What happens if one instruction being executed needs a value produced by an

earlier instruction that hasn’t yet completed execution? Normally this isn’t a prob-

lem—pipelines are designed to make results available as soon as possible. In a few

cases however, a needed operand may not be available. Then the pipeline must be
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stalled, delaying execution of an instruction (and its successors) until the needed

value is available.

Most current pipelined architectures are delayed load. This means that a regis-

ter value created by a load instruction is not available for use by the very next

instruction. Rather it is delayed for one or more instructions. For example on a

MIPS R3000 processor, loads are delayed by one instruction. This delay is needed

to allow the processor’s cache to be searched for the desired operand. Thus the fol-

lowing instruction sequence, though valid, would stall:

lw $12,b # Load b into register 12

add $10,$11,$12 # Add reg 11 and reg 12 into reg 10

Stalls are not inevitable after a load. If another instruction can be placed

between a load and the instruction that uses the loaded value, instruction execu-

tion proceeds without delay. Thus the following instructions would be delay-free:

lw $12,b # Load b into register 12

li $11,100 # Load 100 into register 11

add $10,$11,$12 # Add reg 11 and reg 12 into reg 10

The role of instruction scheduling is to order instructions so that stalls (and

their delays) are minimized.

Code scheduling is normally done at the basic block level. A basic block is a

linear sequence of instructions that contains no branches except at its very end.

Instructions within a basic block are always executed sequentially, as a unit. Dur-

ing code scheduling all the instructions within a basic block are analyzed to deter-

mine an execution order that produces correct computations with a minimum of

interlocks or delays. We’ll consider a simple but effective postpass approach

devised by Gibbons and Muchnick [1986].

Postpass code schedulers operate after code has been generated and registers

have been chosen. They are very general because they can handle code generated

by any compiler (or even hand-coded assembly language programs). However

because instructions and registers have already been selected, they can’t modify

choices already made, even to avoid interlocks.

A code scheduler tries to move apart instructions that will interlock. However,

instructions can’t be reordered haphazardly—loads of a register must precede use

of that register, and stores of a register must follow instructions that compute the

register’s value. We use a dependency dag to represent dependencies between

instructions. Nodes of the dag are instructions that are to be scheduled. An arc

exists between two instructions i and j if instruction i must be executed before

instruction j. Thus arcs are added between instructions that load or compute a reg-

ister and instructions that use or store that register. Similarly an arc is added

between a load from memory location A and a subsequent store into location A.

Also an arc is added between a store into location B and any subsequent load or

store involving location B. In the case of aliasing, we make worst-case assump-

tions. Thus a load through a pointer P must precede a store into any location P
might alias, and a store through P must precede any load or store involving a loca-

tion P might alias.
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As an example, assume we generate the MIPS code shown in Figure 15.9 for

the expression a=((a*b)*(c+d))+(d*(c+d)) .

Figure 15.10 illustrates the corresponding dependency dag. Double-circled

nodes are loads—the critical nodes in this example because they can stall.

Dependency dags have the property that any topological sort of the nodes rep-

resents a valid execution order. This is, as long as an instruction is scheduled

before any of its successors in the dependency dag, it will execute properly. Any

node that is a root of the dependency dag may be scheduled immediately. It is then

removed from the dag, and again any root may be scheduled. Our goal in schedul-

ing instructions will be to choose roots that avoid stalls. In fact the first rule in our

scheduling algorithm is just that:

When choosing a root to schedule, choose one that won’t be stalled

by the most recently scheduled node.

Sometimes we can’t find a root that doesn’t stall its predecessor—not all instruc-

tion sequences are stall-free.

1. lw $10,a 6. add $10,$10,$12

2. lw $11,b 7. mul $11,$11,$10

3. mul $11,$10,$11 8. mul $12,$10,$12

4. lw $10,c 9. add $12,$11,$12

5. lw $12,d 10. sw $12,a

Figure 15.9 MIPS code for a=((a*b)*(c+d))+(d*(c+d))

Figure 15.10 Dependency DAG for a=((a*b)*(c+d))+(d*(c+d))
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If we find more than one root that doesn’t stall its predecessor, secondary cri-

teria apply. We try to select the “nastiest” root—the one most likely to cause

future stalls, or to complicate the scheduling process. Three criteria are consid-

ered, in decreasing order of importance

1. Does the root stall any of its successors in the dependency dag?

2.  How many new roots will scheduling this root uncover?

3.  What is the longest path from this root to a leaf of the dependency dag?
If a root can stall a successor, we want to schedule it immediately so that other

roots can be scheduled before the successor, avoiding a stall. If we schedule a root

that exposes other new roots, we increase the range of choices available to the

scheduler, simplifying its task. If we schedule a root with a long path to a leaf, we

are attacking a “critical path,” a long instruction sequence that allows the sched-

uler few choices in reordering instructions.

In our scheduling algorithm, scheduleDag, we’ll use an operation select that

takes a set of root nodes of the dependency dag, and a criterion. select will choose

the nodes in the root set that meet the criterion, as long as the set selected in non-

empty. That is, if no node in the set meets the criterion, select will return the

entire input set. The reason for this is that a criterion that rejects all nodes is use-

less since our goal is to choose some node to schedule.

For example, select(nodeSet, “Has the longest path to a leaf”) selects those

nodes in nodeSet with the greatest distance to a leaf (several nodes may be

selected if they all share the same maximum distance to a leaf). However,

select(nodeSet, “Can stall some successor”) would return all of nodeSet if no

member of the set had a successor that it stalled. Once we have refined a nodeSet
to a single node, further applications of select are unnecessary; they will have no

effect.

The complete definition of scheduleDag is shown in Figure 15.11. An an

example, consider the dependency dag of Figure 15.10. The code originally gener-

ated (Figure 15.9) contains two stalls (after instructions 2 and 5). The initial set of

roots is 1, 2 and 5, all load instructions. All roots can stall a successor instruction

and none expose a new root if scheduled. Both 1 and 2 have the longest path to a

leaf, so 1 is arbitrarily chosen and scheduled. The root set is now 2 and 5. Instruc-

tion 2 is chosen because it exposes a new root, 3. Next 5 is chosen because it can

 scheduleDag( dependencyDag )
1. while candidates ← roots(dependencyDag) ≠ φ
2. do select(candidates, “Is not stalled by last instruction generated”)
3. select(candidates, “Can stall some successor”)
4. select(candidates, “Exposes the most new roots if generated”)
5. select(candidates, “Has the longest path to a leaf”)
6. Let Inst ∈ candidates
7. Schedule Inst as next instruction to be executed
8. dependencyDag ← dependencyDag - Inst

Figure 15.11  An Algorithm to Schedule Code from a Dependency Dag.
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stall a successor. Instructions 3, 4 and 6 are chosen next, as they form, in turn, sin-

gleton root sets. Instructions 7 and 8 are the new root set; 7 is arbitrarily chosen,

then 8, 9 and 10. The code we produce is shown in Figure 15.12.

15.4.1 Improving Code Scheduling
The code shown in Figure 15.12 is not prefect. A stall still occurs after the fifth

instruction. In fact, using just three registers a stall can’t be avoided. It is shown in

[Kurlander et al. 95] that sometimes an additional register is needed to avoid all

stalls. One way to improve the code produced by scheduleDag is to reallocate

registers in the initial code sequence, using an extra register beyond the original

allocation.

To do this, we find instructions that stall and try to move then “up” in the

instruction sequence. If we can’t move a stalling instruction earlier because it

assigns to a register used by the preceding instruction, we reallocate the register

assigned to by the stalling instruction to be a register unused by the preceding

instruction. Because we’ve added an extra register, we can always find an unused

register, and move the stalling instruction at least one position earlier in the execu-

tion sequence.

For example, reconsidering Figure 15.12, instruction 5 (a load) stalls because

$10 is used in instruction 6. We can’t move instruction 5 up because instruction 4

uses a previous value of $10 , loaded in instruction 1. If we add an additional reg-

ister, $13 , to our allocation, we can load it in instruction 5 (taking care to refer-

ence $13 rather than $10 in instruction 6.) Now instruction 5 can be moved

earlier in the sequence, avoiding a stall. The resulting delay-free code is shown in

Figure 15.13.

It is evident that there is a tension between code scheduling, which tries to

increase the number of registers used (to avoid stalls), and code generation, which

1. lw $10,a 6. add $10,$10,$12

2. lw $11,b 7. mul $11,$11,$10

3. lw $12,d 8. mul $12,$10,$12

4. mul $11,$10,$11 9. add $12,$11,$12

5. lw $10,c 10. sw $12,a

Figure 15.12 Scheduled MIPS code for a=((a*b)*(c+d))+(d*(c+d))

1. lw $10,a 6. add $10,$13,$12

2. lw $11,b 7. mul $11,$11,$10

3. lw $12,d 8. mul $12,$10,$12

4. lw $13,c 9. add $12,$11,$12

5. mul $11,$10,$11 10. sw $12,a

Figure 15.13 Delay-free MIPS code for a=((a*b)*(c+d))+(d*(c+d))
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seeks to reduce the number of registers used (to avoid spills and make registers

available for other purposes). An alternative to postpass code scheduling is an

integrated approach that intermixes register allocation and code scheduling.

The Goodman Hsu [1988] algorithm is a well-known and widely used inte-

grated register allocator and code scheduler. As long as registers are available, it

uses them to improve code scheduling by loading needed values into distinct regis-

ters. This allows loads to “float” to the beginning of the code sequence, eliminat-

ing stalls in later instructions that use the loaded values. When registers grow

scarce, the algorithm switches emphasis, and begins to schedule code to free regis-

ters. When sufficient registers are available, it resumes scheduling to avoid stalls.

Experience has shown that this approach balances nicely the need to use registers

sparingly and yet avoid stalls whenever possible.

15.4.2 Global and Dynamic Code Scheduling
Although we have focused on code scheduling at the basic block level, it is possible

to schedule code at the global level [Bernstein & Rodeh 1991]. Instructions may

be moved upward, past the beginning of a basic block to predecessor blocks in the

control flow graph. We may need to move instructions out of a basic block

because basic blocks are often very small—sometimes only an instruction or two

in size. Moreover, certain instructions, like loads and floating point multiplies and

divides, can incur long latencies. For example, a load that misses in the primary

cache may stall for 10 or more cycles; a miss in the secondary cache—to main

memory—can cost 100 or more cycles.

As a result, code schedulers often seek to move loads as early as possible in an

instruction sequence. There are several complicating factors, however. To what

predecessor block should we move an instruction? Ideally, to a predecessor that is

control equivalent; that is, a predecessor that will be executed if, and only if, the

current block is. An example of this is moving an instruction that follows an if
statement to a position that precedes the if (and thereby past both arms of the

if ). An alternative is to move an instruction to a block that dominates it (that is,

to a block that is a necessary predecessor). Now however, the moved instruction

may be speculative—it may be executed unnecessarily on some execution paths.

Thus if an instruction is moved from a then part to a position above the if , the

instruction will be executed even when the else part is selected. Speculative

instructions may waste computational resources, by executing useless instructions.

What’s worse, if a speculative instruction faults (e.g., a load through a null or ille-

gal pointer), a false run-time error may be created.

Even if we can move an instruction freely upward, how far should we move

it? If we move the instruction too far forward, it will “tie up” a register for an

extended period, making register allocation harder and less effective. Some archi-

tectures, like the DEC alpha, provide a prefetch instruction. This instruction

allows data to be loaded into the primary cache in advance, reducing the chance

that a register load will miss. Again, placement of preloads is a tricky scheduling

issue. We want to preload early enough to hide the delays incurred in loading the
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cache. But, if we preload too early, we may displace other useful cache data, caus-

ing cache misses when these data are used.

A number of recent computer architectures (MIPS R10000, Intel Pentium Pro)

have included a sophisticated dynamic scheduling facility. These designs, some-

times called out of order architectures, delay instructions that aren’t ready to exe-

cute, and dynamically choose successor instructions that are ready to execute.

These designs are far less sensitive to compiler-generated code schedules. In fact,

dynamically scheduled architectures are particularly effective in executing old pro-

grams (“dusty decks”) that were created before code scheduling was even

invented.

Even with dynamically scheduled architectures compiler-generated code

scheduling is still an important issue. Loads, especially loads that frequently miss

in the primary cache, must be moved early enough to hide the long delays a cache

miss implies. Even the best current architectures can’t look dozens or hundreds of

instructions ahead for a load that might miss in the cache. Rather, compilers must

identify those instructions that might incur the greatest delays and move them ear-

lier in the instruction sequence.

15.5 Automatic Instruction Selection
An important aspect of code generation is instruction selection. After a translation

for a particular construct is determined, the machine level instructions that imple-

ment the translation must be chosen. Thus if we decide to implement a switch
statement using a jump table (see Section 13.1.5), instructions that index into the

jump table and then do an indirect jump must be generated.

Often several different instruction sequences can implement a particular trans-

lation. Even something as simple as a + 1 can be implemented by loading 1 into a

register and generating an add instruction, or by generating an increment or add

immediate instruction. We normally want the smallest or fastest instruction

sequence. Thus an add immediate, because it avoids an explicit load, is preferred.

In simple RISC architectures, the choice of potential instruction sequences is

limited because almost all operands must be loaded into registers before they can

be used (immediate operands being a notable exception). Further, the variety of

addressing modes provided is also spartan—often only absolute and indexed

addresses are allowed.

Older architectures, like the Motorola 680x0 and Intel x86, are much more

elaborate. Many different operation codes are provided, and a wide variety of

addressing modes are available. Operands need not always be loaded into regis-

ters, addressing modes can fetch operands indirectly and can increment and decre-

ment registers. Different register classes (e.g., address registers and data registers)

are used in different instructions (in a non-interchangeable manner) and particular

registers are sometimes “wired into” certain instructions.

For very complex architectures, a way of systematizing and automating

instruction selection is vital. Even for simpler architectures, it may be necessary to

“extend” a code generator when a successor architecture is introduced. Very
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ambitious compilers may aim to compile into more than one target architecture,

mandating alternative instruction sequences for different target machines.

Instruction selection is often simplified by translating source language con-

structs into a very low-level tree-structured intermediate representation (IR). In

this IR, leaves represent registers, memory locations, or literal values, and internal

nodes represent basic operations on operand values. Detailed data access patterns

and manipulations are exposed. (For an excellent example of a low-level tree-

structured IR see [Appel 87]) Consider the statement b[i]=a+1 , where b is an

array of integers, i is a global integer variable, and a is a local variable accessed

through the frame register, $fp . The statement’s tree-structured IR is shown in

Figure 15.14. Note that leaves corresponding to identifiers are their addresses (if

globals) or offsets (if locals). Explicit memory fetches (using the fetch operator)

are shown, as is the multiply by 4 needed to build a valid word address for an ele-

ment of an array of integers.

A tree-structured IR may also be used to define the effect of each instruction

of a computer. A tree defines the computation performed by the instruction as well

as the kind of value it produces. This is illustrated in Figure 15.15 in which tree-

structured patterns (or productions) are used to define valid IR trees.

Figure 15.14 A Low-level IR Representation of b[i]=a+1

Figure 15.15 IR Tree Patterns for Various MIPS Instructions.
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Now instruction selection for a given IR tree becomes a matter of matching

instruction patterns against the generated IR such that the IR tree is covered

(parsed) with adjacent patterns. That is, we find a subtree in the IR translation

that matches exactly the pattern for some instruction. That subtree is then

replaced with the pattern’s left hand side. The process is repeated until the entire

IR tree is reduced to a single node. This is very similar to ordinary bottom-up

parsing (Chapter 6).

As instruction patterns are matched, their corresponding machine language

instructions are generated. Registers can be allocated “on the fly” using the tech-

niques of Section 15.3.1. Alternatively, pseudo-registers can be allocated as code is

generated, and then later mapped to real registers using the graph coloring tech-

niques of Section 15.3.2.

As an example, reconsider the IR tree corresponding to b[i]=a+1 (Figure

15.16 (a)). We first match a load of i (b). Next, a multiply by 4 is matched (c).

Then an indexed load is generated for a (a local variable), (d). Finally, an add

immediate (e) and a store instruction, (f), reduce the IR tree to void . The instruc-

tions generated (assuming calls to getReg and freeReg as code is generated) are

shown in Figure 15.17.

15.5.1 Instruction Selection Using BURS
It is often the case that more than one instruction sequence can implement the

same construct. In terms of IR trees, different reductions of the same tree, yielding

Figure 15.16 Instruction Selection Using Patterns.
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different instruction sequences, may be possible. How can we choose the instruc-

tion sequence to be generated?

A very elegant approach involves assigning costs to instruction patterns. The

cost of an instruction is set when a code generator is built. This cost may be size of

an instruction, or its execution speed, or the number of memory references the

instruction makes, or any criterion that measures how “good” an instruction is.

When given a choice, we’ll prefer a cheaper instruction over a more expensive one.

Now matching of instruction patterns to an IR tree is generalized so that a

least-cost cover is obtained. That is, the pattern matcher guarantees that the

matches it selects have the lowest possible cost. Thus using the measure of quality

selected when the code generator was built, the best possible instruction sequence

is generated.

To guarantee that a least-cost cover of an IR tree is found, we use dynamic

programming. Starting at the leaves of the tree, we mark each leaf with the lowest

cost possible to reduce the leaf to each of the nonterminals. (Nonterminals, as in

context-free productions, are the symbols that appear on the left-hand side of

instruction patterns). Next interior nodes just above the leaves are considered.

Each instruction pattern that correctly matches the interior node and has the cor-

rect number of children is considered. The cost of the pattern plus the costs of the

node’s children are considered. The node is marked with the cheapest cost possible

to reduce it to each nonterminal. We continue traversing the IR tree, until the root

node is reached. The lowest cost found to reduce it to any nonterminal is selected

as the best (least-cost) cover.

IR trees for a large program or subroutine can easily comprise tens of thou-

sands of nodes. The extensive processing needed for each node would appear to

make least-cost instruction selection using patterns a very slow process. Happily

this is not the case.

An approach based on BURS theory (Bottom Up Rewrite Systems) [PG 88]

allows very fast instruction selectors (and code generators) to be built. Code gener-

ators built using BURS theory can be extremely fast because all dynamic program-

ming is done in advance when a special BURS automaton is built. During

compilation it is only necessary to make two traversals of the IR tree: one bottom-

up traversal to label each node with a state that encodes all optimal matches and a

second top-down traversal that uses these states to select and generate code. It has

been reported that careful encodings can produce an automaton that executes

fewer than 90 RISC instructions per node to do both traversals.

lw $t1,i

mul $t1,$t1,4

lw $t2,a($fp)

addi $t2,$t2,1

sw $t2,b($t1)

Figure 15.17  MIPS code for b[i]=a+1
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The automaton that labels the tree is a simple finite state machine, similar to

that used in shift-reduce parsers (Chapter 6). A bottom-up walk of the tree is per-

formed, and the label for any given node is determined by a table lookup given the

operator at the node and the states that label each of its children. The automaton

that emits code is equally simple in design. The code to be emitted is determined

by the state that labels a node and by the nonterminal to which that node should

be reduced—another table lookup.

As an example, the instruction patterns of Figure 15.15 would all be given a

cost of 1 except for mul , which would be given a cost of 3. This is because mul is

actually implemented by the MIPS assembler using three hardware instructions,

whereas all the other instructions are implemented using a single instruction.

Returning to the example of Figure 15.14, all the leaves would be labeled with a

state indicating that no reductions of leaf nodes are possible—the leaves must all

be matched directly. Visiting i ’s parent with its state, the fetch would be labeled

with a state indicting that application of an lw pattern is possible, at a cost of 1.

Going to its parent (a * operator), the state reached would show that although

two reductions are possible (patterns for both mul and sll match); sll , being

cheaper, will apply. That is, the instruction selector has recognized a well-known

trick—multiplication by a power of two can often be implemented more efficiently

by doing a left shift rather than an explicit multiply.

Continuing, the rest of the nodes are labeled, with the remaining matches

being identical to those illustrated in Figure 15.16. The state labeling the root tells

us that the final instruction to be generated (to implement the assignment) will be

a sw. The two subtrees are visited to generate the instructions needed to imple-

ment them. We therefore generate the root’s instruction after returning from recur-

sive visits to both children, guaranteeing that the store’s operands are computed

prior to its execution. We generate the code shown in Figure 15.18.

Two difficulties arise in creating a BURS-style code generator: efficiently gen-

erating the states and state transition tables (because all potential dynamic pro-

gramming decisions are done at table generation time, they must be done

efficiently) and creating an efficient encoding of the automata for use in a com-

piler. Fraser and Henry discuss a solution to the encoding problem in [FH 91].

Proebsting created BURG, [Pro95], a simple and efficient tool for generating

BURS-style code generators. Using a very clean implementation and ingenious

state elimination techniques, least-cost code generators for a variety of architec-

tures can be created in a few seconds.

lw $t1,i

sll $t1,$t1,2

lw $t2,a($fp)

addi $t2,$t2,1

sw $t2,b($t1)

Figure 15.18  Improved MIPS code for b[i]=a+1
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15.5.2 Instruction Selection Using Twig
Other code generation systems based on tree pattern matching and dynamic

programming have been developed. They differ primarily from BURS in how they

do tree pattern matching and in the fact that they do dynamic programming at

compile-time rather than compile-compile time.

Aho, Ganapathi, and Tjiang [AGT 89] created a tree manipulation language

and system called Twig. Given a specification of tree patterns and associated costs,

Twig generates a top-down tree automaton that will find the least-cost cover of a

subject tree. Twig uses fast top-down Hoffmann-O’Donnell [HO 82] pattern

matching in parallel with dynamic programming to find the least-cost cover.

Starting at the root of possible instruction trees, paths to each of the tree’s

children are traced. Whenever a such a path is correctly traced, a counter is incre-

mented. When the counter equals the number of children a pattern tree has, a

potential match is recognized. Using costs and dynamic programming, the least-

cost cover for an entire IR tree can be found.

The costs associated with patterns in Twig are more general than those

afforded by any BURS system. Twig may compute the cost of a pattern dynami-

cally—depending on semantic information available at compile-time. This flexibil-

ity further allows Twig to abort certain matches if semantic predicates are not

satisfied. Thus, the applicability of Twig’s patterns is context sensitive. BURS does

not have this flexibility since all costs must be fixed prior to compilation to allow

precomputation of dynamic programming decisions. The great advantage of

BURS is its speed. All possible matches are anticipated in advance and tabulated.

Twig must recognize partial matches and update counters as instruction selection

proceeds. Given the huge IR trees that often need to be translated, even a little

extra processing at each node can represent a significant slowdown.

15.5.3 Other Approaches
One of the first instruction selection techniques based on tree rewriting was that of

Cattell [Cat 80]. First the effect of each instruction was described, using a register-

transfer notation. Then a code generator “discovered” appropriate code sequences

by matching instructions against IR trees. That is, the code generator explored

ways to decompose an IR tree into combinations of special primitive trees, using

backtracking if necessary. Because this process could be very slow, a catalog of the

tree patterns that are implemented was precomputed. At compile-time this catalog

was searched to find available instruction sequences.

Glanville and Graham [GG 78] observed that the problem of matching code

templates against an IR tree is very similar to the problem of matching produc-

tions against a token sequence during parsing. They cleverly reformulated the tem-

plate-matching problem in context-free parsing terms. Using standard shift-reduce

parsers, augmented to handle multiple template matches, instruction selection

could be automated.

A limitation of the Graham-Glanville approach is that it is purely syntactic. It

simply matches, in a context-free manner, sequences of symbols. Ganapathi and
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Fischer [GF 85] suggested adding attributes to code templates. Attributes allow

types, sizes and values to influence instruction selection.

The Back End Generator (BEG) [ESL 89] finds a least-cost cover of the tree

using dynamic programming techniques that are essentially identical to Twig’s.

Like Twig, BEG can guard patterns with semantic predicates. A BEG specification,

in addition to having instruction patterns, includes a description of the register set

of the target machine. This specification automatically generates the register allo-

cator. Experiments show code quality and code generation times to be comparable

to handwritten code generators.

Fraser, Hanson, and Proebsting [FHP 92] developed a code-generator genera-

tor based on naive pattern matching and dynamic programming. This system,

iburg, maintains the same interface as BURG. Although iburg code generators are

slower than those generated by BURG, iburg presents a simple and efficient frame-

work for the development of pattern-based code generators.

15.6 Peephole Optimization
To produce high-quality code, it is necessary to recognize a multitude of spe-

cial cases. For example, it is clear we would like to avoid generating code for an

addition of zero to an operand. But where should we check for this special case? In

each semantic routine that might generate an add? In each code-generation routine

that might emit an add instruction?

Rather than distribute knowledge of special cases throughout semantic or

code-generation routines, it is often preferable to utilize a distinct peephole opti-

mization phase that looks for special cases and replaces them with improved code.

Peephole optimization may be performed on ASTs, IR trees [Tan 82] or generated

code [McK 65]. As the term “peephole” suggests, a small window of two or three

instructions or nodes is examined. If the instructions in the peephole match a par-

ticular pattern, they are replaced with a replacement sequence. After replacement,

the new instructions are reconsidered for further optimization.

In general, we represent the collection of special cases that define a peephole

optimizer as a list of pattern-replacement pairs. Thus, pattern ⇒ replacement
means that if a instruction sequence or tree matching the pattern is seen, it is

replaced with the replacement sequence. If no pattern applies, the code sequence is

unchanged. Clearly the number of special cases that might be included is unlim-

ited. We will illustrate where peephole optimization can be employed, and the

kinds of optimizations that can be realized.

15.6.1 Levels of Peephole Optimization
In general there are three places where peephole optimization may profitably be

employed. After parsing and typechecking, a program is represented in AST form.

Here peephole optimization may be used to optimize the AST, recognizing special

cases at the source level that are independent of how a construct is translated, or

the code that is generated for it.
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After translation, a program is represented in an IR or bytecode form. Here

peephole optimization can recognize optimizations that simplify or restructure an

IR tree or bytecode sequence. These optimizations are independent of the actual

target machine or the exact code sequences used to implement an IR tree or byte-

codes.

Finally, after code generation peephole optimization can replace pairs or tri-

ples of target machine instructions with shorter or simpler instruction sequences.

At this level, the optimization is highly dependent on the details of a machine’s

instruction set.

AST Level Optimizations. In Figure 15.19 we illustrate optimizations that can sim-

plify or improve an AST representation of a program. In (a) an IF whose condi-

tion is always true is replaced with the body of the conditional. In (b) and (c),

expressions involving constant operands are “folded” (replaced with the value of

the expression). This folding optimization can expose other optimizations (such as

the conditional replacement optimization of (a)).

Optimizations at the AST level can conveniently be implemented using a tree

rewriting tool like BURS. Source patterns are first recognized and labeled. Then

during the “processing” traversal, trees can be rewritten into the target form. If

necessary, an AST can be traversed several times, so that rewritten ASTs can be

matched and transformed several times.

IR Level Optimizations. As illustrated in Figure 15.20, a variety of useful optimiza-

tions can be performed at the IR level. In (a) and (b), constant folding is specified.

Since some arithmetic operations are exposed only after translation (e.g., indexing

arithmetic), folding can be done at both the AST and IR levels. In (c), multiplica-

tion by a power of 2 is replaced with a left shift operation. In (d) and (e) identity

operations are removed. In (f) the commutativity of addition is exposed, and in (g)

addition of a negative value is transformed into subtraction.

Transformations on IR trees can be conveniently implemented using a tool

like BURS.

As illustrated in Figure 15.21, optimizations corresponding to those of Figure

15.20 can be applied to a bytecode representation of a program. This level of opti-

mization may be appropriate if bytecodes are later expanded into target machine

code. Alternatively, the machine-level optimizations described in the next section

Figure 15.19 AST Level Peephole Optimization.
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may be applied to bytecodes, since bytecodes share much of the structure of con-

ventional machine code.

Code Level Optimizations. Figure 15.22 illustrates some simple peephole optimiza-

tions performed after code generation. In (a) a conditional branch around an

unconditional branch is replaced with a single conditional branch (with the sense

of the test inverted). In (b), a branch to the next instruction is removed (this is

sometimes generated when a then or else part of an if is null). A branch to a

second branch can be collapsed to a direct branch to the final target (c). In (d) a

move from a register to itself is suppressed (this sometimes happens when a special

register, like a parameter register, is loaded with a value that already is in the cor-

rect register). In (e) a register is stored into a location and then that same register is

immediately reloaded from the same location; the load is unnecessary and may be

deleted.

Figure 15.20 IR Level Peephole Optimizations.

Figure 15.21 Bytecode Level Peephole Optimizations.
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More elaborate architectures present additional opportunities for peephole

optimization. If a special increment or decrement instruction is available, it can

replace an ordinary add immediate (which usually is longer and a bit slower). If

auto-increment or auto-decrement addressing modes are available, these can be

used to “hide” an explicit increment or decrement of an index. Some architectures

have a special “loop control” instruction that decrements a register and condition-

ally branches if it is zero.

Recognizing replacement patterns must be done quickly, if peephole optimiza-

tion is to be fast. Operator-operand combinations are hashed to applicable pat-

terns. Also, the size of a peephole window is normally limited to two or three

instructions. Using a careful hashed implementation, speeds of several thousand

instructions per second have been achieved [DF 84].

The concept of analyzing physically adjacent instructions has been generalized

to logically adjacent instructions [DF 82]. Two instructions are logically adjacent

if they are linked by flow of control or if they are unaffected by intervening

instructions. (The “branch chain” of Figure 15.22 (c) is a good example of this.)

By analyzing logically adjacent instructions it is possible to remove jump chains

(jumps to jump instructions) and redundant computations (for example, unneces-

sarily setting a condition code). Detecting logical adjacency can be costly, so care is

required to keep peephole optimization fast.

15.6.2 Automatic Generation of Peephole Optimizers
In [FD 80] ways of automating the creation of peephole optimizers are dis-

cussed. The idea is first to define the effect of target machine instructions at the

register-transfer level. At this level, instructions are seen to modify primitive hard-

ware locations, including memory (represented as a vector M), registers (repre-

sented as a vector R), the PC (program counter), various condition codes, and so

Figure 15.22 Code Level Peephole Optimizations.
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on. A target machine instruction may have more than one effect, and its definition

at the register-transfer level may include more than one assignment.

The peephole optimizer (PO) operates by considering pairs of instructions,

expanding them to their register-transfer level definitions, simplifying the com-

bined definitions, and then searching for a single instruction that has the same

effect as the combined pair.

To be applicable, an instruction must perform all the register transfers of the

combined instructions. It may also do other register transfers as long as these are

dead (and therefore have no effect on subsequent computations). Thus an instruc-

tion may set a condition code, even if this is not wanted, as long as the updated

condition code is not referenced by later instructions.

Instruction pairs that start with a conditional branch get special treatment. In

particular, the second instruction is prefixed with a conditional representing the

negation of the original condition (the only way the second instruction is executed

is if the conditional branch fails). An unconditional branch is paired with its target

instruction. This pairing often allows jump chains (a jump to another jump) to be

collapsed. Note, however, that instruction pairs with the second instruction

labeled are not optimized. This situation is needed to make jumps to such labels

work correctly. However, if all references to a label are removed by the PO, then

the label itself is also removed, possibly allowing new optimizations to be discov-

ered.

The analysis and simplification of the instructions just described are not actu-

ally done during compilation because this would be far too slow. Rather, represen-

tative samples of actual programs are analyzed in advance, and the most common

peephole optimizations are stored in a table. During compilation, this table is con-

sulted to determine if the instructions currently in the peephole may be optimized.

Exercises
1. Consider the following Java function:

public static int fact(int n){

if (n == 0)

return 1;

else return n*fact(n-1); }

Show the JVM bytecodes that would be generated for this method. Explain

how these bytescodes would be translated to target machine code using the

techniques of Section 15.1.

2. Recall that in Section 13.1.5 switch statements were translated using either a

tableswitch or lookupswitch bytecode. Using either the MIPS architec-
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ture or your favorite processor architecture, explain how the tableswitch
and lookupswitch can be efficiently translated into machine-level instruc-

tions.

3. On many processors certain registers must be used to hold a parameter to a

subprogram or a return value from a function. Suggest how the techniques of

Section 15.1 could be extended so that when bytecodes are translated, param-

eters and return values are computed directly into the required register (with-

out any unnecessary register to register moves).

4. Recall that a key to generating efficient target-machine code from bytecodes is

to avoid explicit stack manipulations for bytecode operands. Rather, machine

registers are used.

Assume we use the techniques of Section 15.3.1 to allocate registers “on the

fly.” Explain how we could tag each bytecode, prior to code generation, with

the machine registers the bytecode will use for its operands and result value.

(These tags would then be used to “fill in” register names when bytecodes are

expanded to machine code.)

5. A common subprogram optimization is inlining. At the point of a method call,

the body of the method is substituted for the call, with actual parameter val-

ues used to initialize local variables that represent parameters.

Assume we have the bytecodes that represent the body of subprogram P that

is marked private or final (and hence can’t be redefined in a subclass).

Assume further that P takes n parameters and uses m local variables. Explain

how we could substitute the bytecodes representing P’s body for a call to P,

prior to machine code generation. What changes in the body must be made to

guarantee that the substituted bytecodes don’t “clash” with other bytecodes in

the context of call?

6. Show the expression tree, with registerNeeds labeling, that corresponds to

the expression a+(b+(c+((d+e)*(f/g)))) .

Show the code that would be generated using the treeCG code generator.

7. Recall that registerNeeds gives the minimum number of register needed to

evaluate an expression without spilling registers to memory, Show that there

exist expressions of unbounded size that require only 2 registers for evalua-

tions. Show that for any value of m there exist expressions that always require

at least m registers.

8. Some computer architectures include an immediate operation of the form

op $reg1,$reg2,val
that computes $reg1 = $reg2 op val . In an immediate instruction val does

not need to be loaded into a register; it is extracted directly from the instruc-

tion’s bit pattern.

Explain how to extend registerNeeds and treeCG to accommodate architec-

tures that include immediate operations.

9. Sometimes the code generated for an expression tree can be improved if the

associative property of operators like + and * is exploited. For example, if the
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following expression is translated using treeCG, four registers will be needed:

(a+b) * (c+d) * ((e+f) / (g-h))

Even if the commutativity of + and * is exploited, four registers are still

required. However, if the associativity of multiplication is exploited to evalu-

ate multiplicands from right to left, then only three registers are needed. [First

((e+f) / (g-h)) is evaluated, then (c+d) * ((e+f) / (g-h)) , and

finally (a+b) * (c+d) *((e+f) / (g-h)) .]

Write a routine associate that reorders the operands of associative operands

to reduce register needs. (Hint: Allow associative operators to have more than

two operands.)

10. In Section 15.4 we saw that many modern architectures are delayed load.

That is, a value loaded into a register may not be used in the next instruction;

a delay of one or more instructions is imposed (to allow time to access the

cache).

The treeCG routine of Section 15.2 is not designed to handle delayed loads.

Hence, it almost always generates instruction sequences that stall at selected

loads.

Show that if an instruction sequence (of length 4 or more) generated by

treeCG is given an additional register, it is possible to reorder the generated

instructions to avoid all stalls for a processor with a one instruction load

delay. (It will be necessary to reassign the register used by some operands to

utilize the extra register).

11. Following the example of doubleSum in Section 15.3, convert the string-
Sumfunction of Section 15.1 into a form that makes explicit temporaries, live

ranges, and parameter and return value register assignments. Then create the

interference graph for stringSum . Use this interference graph and GCRegAl-
loc to assign registers to stringSum , assuming three registers are available

(including $a0 , the parameter register and $vo , the return value register).

12. Assume we have the following method

int f(int i) {

g(1,i);

}

At the point where the second parameter of g is loaded, we have a conflict if

we require that parameters be passed in registers. In particular, i is passed in

the first parameter register. But when the second parameter of g is loaded, the

first parameter register is loaded with the value 1, possibly making i inaccessi-

ble. How can a register allocator deal with the problem of reuse of dedicated

parameter registers? That is, what rules should be followed in determining

where a parameter value is to be allocated throughout a program or subpro-

gram?

13. In GCRegAlloc we spill a live range if we are unable to color it. An alternative

to spilling a live range is to split it, as is done in PriorityRegAlloc. What
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changes are needed in GCRegAlloc if we split an uncolorable live range rather

than spill it?

14. At the site of a method call, we may need to save registers currently in use (lest

they be overwritten by the method about to be executed). Assume we allocate

registers using GCRegAlloc. Explain how to determine which registers are in

use at a method call.

15. Assume we have n registers available to allocate to a subprogram. Explain

how, using either GCRegAlloc or PriorityRegAlloc, we can estimate the total

cost of register spills within the subprogram. How could this cost estimate be

used in deciding how many registers to allocate to a subprogram?

16. In performing “on the fly” register allocation, some implementations store

freed registers on a stack. Thus the most recently freed register will be the next

register to be allocated. On the other hand, other implementations place freed

registers at the back of a queue. Thus the least-recently freed register will be

the next to be allocated.

From the point of view of a postpass code scheduler, which of the register real-

location implementations (stack vs. queue) is preferable? Why?

17. The scheduleDag code scheduler of Section 15.4 assumes that instructions

that can stall have unit delay. That is, one instruction must separate an

instruction that can stall from the first use of the value it produces. It may

happen that some instructions have n cycle delays, meaning n instructions

must separate the instruction from the first use of the value it produces.

How must scheduleDag be modified to handle instructions that have n cycle

delays?

18. The scheduleDag code scheduler is a post-pass scheduler. That is, it schedules

instructions after registers have been allocated. It is possible to create a depen-

dency dag in terms of instructions that reference pseudo-registers. After

instructions are scheduled, the pseudo-registers are mapped to real registers.

Such a scheduler is a pre-pass scheduler, since it operates before register allo-

cation.

It is important to note that the order in which instructions are scheduled will

affect the number of registers that later are needed. For example, scheduling

all loads immediately will force each load to use a different register. Schedul-

ing some loads after other operations may allow registers to be reused.

If scheduleDag is used as a pre-pass code scheduler, how should it be modi-

fied so that the number of pseudo-registers in use is a criterion in selecting the

next instructions to schedule? That is, scheduling an instruction that increases

the number of registers that will be needed should be discouraged unless it

serves to avoid stalls in the code schedule.

19. It is sometimes the case that we need to schedule a small block of code that

forms the body of a frequently executed loop. For example

for (i=2; a <1000000; i++)

a[i] = a[i-1]*a[i-2]/1000.0;
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Operations like floating point multiplication and division often have signifi-

cant delays (5 or more cycles). If a loop body is small, code scheduling can’t

do much—there aren’t enough instructions to cover all the delays. In such a

situation loop unrolling may help. The body of loop is replicated n times, with

loop indices and loop limits suitably modified. For example, with n = 2, the

above loop would become

for (i=2; a <999999; i+=2){

a[i] = a[i-1]*a[i-2]/1000.0;

a[i+1] = a[i]*a[i-1]/1000.0;}

A larger loop body gives a code scheduler more instructions that can placed

after instructions that may stall. How can we determine the value of n (the

loop unrolling factor) necessary to cover all (or most) of the delays in a loop

body? What factors limit how large n (or an unrolled loop body) should be

allowed to become?

20. The scheduleDag code scheduler is very optimistic with respect to loads—it

schedules them assuming that they always hit in the primary cache. Real loads

are not always so co-operative. Assume we can identify load instructions most

likely to miss. How should scheduleDag be modified to use “probability of

cache miss” information in scheduling instructions?

21. Assume we extend the IR tree patterns defined in Figure 15.15 with the fol-

lowing patterns for the MIPS add and load immediate instructions:

Show how the following IR tree, corresponding to A[i+1] = (1+i)*1000 ,

would be matched. What MIPS instructions would be generated?

22. Code generators that use IR tree pattern matching still have the problem of

allocating registers for the generated code. Suggest how an “on the fly” regis-
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ter allocator can be integrated with pattern matching to form a complete code

generator.

23. Instructions like the MIPS load immediate instruction are complicated by the

fact that the immediate operand may be too big to fit in a single instruction. In

fact immediate operands that are too big force two instructions to be gener-

ated—a “load upper immediate” that fills in the upper half of a word followed

by an or immediate that fills in the lower half of a word.

How can costs and IR tree patterns be used to specify to an instruction selec-

tor that two alternative translations are possible depending on the size of an

immediate operand?

24. Assume we have tree-structured instruction patterns limited to the two forms

shown below

That is, a nonterminal may generate a single terminal symbol or it may gener-

ate an operator, all of whose children are nonterminals.

Give an algorithm that can walk any IR tree and determine whether it can be

covered (matched) using a set of productions limited to the two forms

described above.

25. Assume that we now add cost values (integer literals greater than or equal to

0) to instruction patterns limited to the two forms described in Exercise 24.

Extend the algorithm you proposed in Exercise 24 so that it now finds a least-

cost cover. That is, your algorithm should choose productions that minimize

the overall cost of matching a given IR tree.

26. The following instruction sequence often appears in Java programs:

a[i] = ...

... = a[i];

That is, an element of an array is stored, then that same element is immedi-

ately reused. Suggest a peephole optimization rule, at the bytecode level, that

would recognize this situation and optimize it using the dup  bytecode.

27. Machines like the MIPS and SPARC have delayed branch instructions. That is,

the instruction immediately following a branch is executed prior to transfer-

ring control to the target of the branch.

Often, compilers simply generate a nop instruction after a branch, effectively

hiding the effects of the delayed branch. Suggest a peephole optimization pat-

tern for unconditional branches followed by a nop that swaps the instruction

prior to the branch into the “delay slot” that follows it. Can this optimization

always be done, or must some conditions be met to make the swap valid?

NonTerm → OP NonTerm → terminal

NonTerm NonTerm...
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Now consider a delayed conditional branch in which the value of a register is

tested. If the condition is met, the instruction following the conditional branch

is executed, and then the branch is taken. Otherwise, instructions following

the conditional branch are executed (as usual); no branch is taken. Suggest a

peephole optimization pattern that allows the instruction preceding a condi-

tional branch to be moved after it as long as the swapped instruction does not

affect the register tested by the conditional branch.

28. Many architectures include a load negative instruction that loads the negation

of a value into a register. That is, the value, while being loaded, is subtracted

from zero, with the difference stored into the register. Suggest a variety of

instruction-level peephole optimization patterns that can make use of a load

negative instruction.

29. After a peephole optimization is preformed, the optimized instruction that is

substituted for the original instructions is reconsidered for further peephole

optimizations. Give examples of cases in which peephole optimizations may

be profitably cascaded.

30. Assume we have a peephole optimizer that has n replacement patterns. The

most obvious approach to implementing such an optimizer is to try each pat-

tern in turn, leading to an optimizer whose speed is proportional to n.

Suggest an alternative implementation, based on hashing, that is largely inde-

pendent of n. That is, the number of patterns considered may be doubled

without automatically doubling the optimizer’s execution time.
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	while �stack ¹ f���
	11.
	do
	 d ¨ pop(stack)
	12.
	reg(d) ¨ any register not assigned to neighbors(d)
	Figure 15.7� Chaitin’s graph coloring register allocator.
	Improvements to Graph Coloring Register Allocators

	15.3.3� Priority Based Register Allocation

	   PriorityRegAlloc
	(
	proc, regCount
	)
	1.
	ig ¨ buildInterferenceGraph(proc)
	2.
	unconstrained ¨ { n Œ nodes(ig) Ô neighborCount(n) < regCount }
	3.
	constrained ¨ { n Œ nodes(ig) Ô neighborCount(n) ³ regCount }
	4.
	while �constrained ¹ f���
	5.
	do
	for �c Œ constrained such that not colorable(c) and canSplit(c)
	6.
	do
	c1, c2 ¨ split(c)
	7.
	constrained ¨ constrained - c
	8.
	if �neighborCount(c1) < regCount
	9.
	then
	unconstrained ¨ unconstrained + c1
	10.
	else
	constrained ¨ constrained + c1
	11.
	if �neighborCount(c2) < regCount
	12.
	then
	unconstrained ¨ unconstrained + c2
	13.
	else
	constrained ¨ constrained + c2
	for �d Œ neighbors(c) such that d Œ unconstrained �����������������������������������������������...
	14.
	do
	unconstrained ¨ unconstrained - d
	15.
	constrained ¨ constrained + d
	/* At this point all nodes in constrained are colorable ��������������������������������������or ...
	16.
	Select p Œ constrained such that priority(p) is maximized
	17.
	if �colorable(p)
	18.
	then
	color p
	else
	spill p
	19.
	color all nodes in unconstrained
	Figure 15.8� A priority-based graph coloring register allocator.
	15.3.4� Interprocedural Register Allocation


	15.4� Code Scheduling
	Figure 15.9� MIPS code for a=((a*b)*(c+d))+(d*(c+d))
	Figure 15.10� Dependency DAG for a=((a*b)*(c+d))+(d*(c+d))
	   scheduleDag
	(
	dependencyDag
	)
	1.
	while �candidates ¨ roots(dependencyDag) ¹ f���
	2.
	do
	select(candidates, “Is not stalled by last instruction generated”)
	3.
	select(candidates, “Can stall some successor”)
	4.
	select(candidates, “Exposes the most new roots if generated”)
	5.
	select(candidates, “Has the longest path to a leaf”)
	6.
	Let Inst Œ candidates
	7.
	Schedule Inst as next instruction to be executed
	8.
	dependencyDag ¨ dependencyDag - Inst
	Figure 15.11� An Algorithm to Schedule Code from a Dependency Dag.
	Figure 15.12� Scheduled MIPS code for a=((a*b)*(c+d))+(d*(c+d))
	15.4.1� Improving Code Scheduling
	Figure 15.13� Delay-free MIPS code for a=((a*b)*(c+d))+(d*(c+d))

	15.4.2� Global and Dynamic Code Scheduling


	15.5� Automatic Instruction Selection
	Figure 15.14� A Low-level IR Representation of b[i]=a+1
	Figure 15.15� IR Tree Patterns for Various MIPS Instructions.
	Figure 15.16� Instruction Selection Using Patterns.
	lw $t1,i
	mul $t1,$t1,4
	lw $t2,a($fp)
	addi $t2,$t2,1
	sw $t2,b($t1)
	Figure 15.17� MIPS code for b[i]=a+1
	15.5.1� Instruction Selection Using BURS

	lw $t1,i
	sll $t1,$t1,2
	lw $t2,a($fp)
	addi $t2,$t2,1
	sw $t2,b($t1)
	Figure 15.18� Improved MIPS code for b[i]=a+1
	15.5.2� Instruction Selection Using Twig
	15.5.3� Other Approaches


	15.6� Peephole Optimization
	15.6.1� Levels of Peephole Optimization
	AST Level Optimizations
	Figure 15.19� AST Level Peephole Optimization.
	IR Level Optimizations

	Figure 15.20� IR Level Peephole Optimizations.
	Figure 15.21� Bytecode Level Peephole Optimizations.
	Code Level Optimizations

	Figure 15.22� Code Level Peephole Optimizations.

	15.6.2� Automatic Generation of Peephole Optimizers
	Exercises
	1. Consider the following Java function:
	Show the JVM bytecodes that would be generated for this method. Explain how these bytescodes woul...

	2. Recall that in Section 13.1.5 switch statements were translated using either a tableswitch or ...
	3. On many processors certain registers must be used to hold a parameter to a subprogram or a ret...
	4. Recall that a key to generating efficient target-machine code from bytecodes is to avoid expli...
	Assume we use the techniques of Section 15.3.1 to allocate registers “on the fly.” Explain how we...

	5. A common subprogram optimization is inlining. At the point of a method call, the body of the m...
	Assume we have the bytecodes that represent the body of subprogram P that is marked private or fi...

	6. Show the expression tree, with registerNeeds labeling, that corresponds to the expression a+(b...
	Show the code that would be generated using the treeCG code generator.

	7. Recall that registerNeeds gives the minimum number of register needed to evaluate an expressio...
	8. Some computer architectures include an immediate operation of the form ���op $reg1,$reg2,val t...
	Explain how to extend registerNeeds and treeCG to accommodate architectures that include immediat...

	9. Sometimes the code generated for an expression tree can be improved if the associative propert...
	Even if the commutativity of + and * is exploited, four registers are still required. However, if...
	Write a routine associate that reorders the operands of associative operands to reduce register n...

	10. In Section 15.4 we saw that many modern architectures are delayed load. That is, a value load...
	The treeCG routine of Section 15.2 is not designed to handle delayed loads. Hence, it almost alwa...
	Show that if an instruction sequence (of length 4 or more) generated by treeCG is given an additi...

	11. Following the example of doubleSum in Section 15.3, convert the stringSum function of Section...
	12. Assume we have the following method


	int f(int i) {
	g(1,i);
	}
	At the point where the second parameter of g is loaded, we have a conflict if we require that par...
	13. In GCRegAlloc we spill a live range if we are unable to color it. An alternative to spilling ...
	14. At the site of a method call, we may need to save registers currently in use (lest they be ov...
	15. Assume we have n registers available to allocate to a subprogram. Explain how, using either G...
	16. In performing “on the fly” register allocation, some implementations store freed registers on...
	From the point of view of a postpass code scheduler, which of the register reallocation implement...

	17. The scheduleDag code scheduler of Section 15.4 assumes that instructions that can stall have ...
	How must scheduleDag be modified to handle instructions that have n cycle delays?

	18. The scheduleDag code scheduler is a post-pass scheduler. That is, it schedules instructions a...
	It is important to note that the order in which instructions are scheduled will affect the number...
	If scheduleDag is used as a pre-pass code scheduler, how should it be modified so that the number...

	19. It is sometimes the case that we need to schedule a small block of code that forms the body o...
	Operations like floating point multiplication and division often have significant delays (5 or mo...
	A larger loop body gives a code scheduler more instructions that can placed after instructions th...

	20. The scheduleDag code scheduler is very optimistic with respect to loads—it schedules them ass...
	21. Assume we extend the IR tree patterns defined in Figure 15.15 with the following patterns for...
	Show how the following IR tree, corresponding to A[i+1] = (1+i)*1000, would be matched. What MIPS...

	22. Code generators that use IR tree pattern matching still have the problem of allocating regist...
	23. Instructions like the MIPS load immediate instruction are complicated by the fact that the im...
	How can costs and IR tree patterns be used to specify to an instruction selector that two alterna...

	24. Assume we have tree-structured instruction patterns limited to the two forms shown below
	That is, a nonterminal may generate a single terminal symbol or it may generate an operator, all ...
	Give an algorithm that can walk any IR tree and determine whether it can be covered (matched) usi...

	25. Assume that we now add cost values (integer literals greater than or equal to 0) to instructi...
	26. The following instruction sequence often appears in Java programs:
	That is, an element of an array is stored, then that same element is immediately reused. Suggest ...

	27. Machines like the MIPS and SPARC have delayed branch instructions. That is, the instruction i...
	Often, compilers simply generate a nop instruction after a branch, effectively hiding the effects...
	Now consider a delayed conditional branch in which the value of a register is tested. If the cond...

	28. Many architectures include a load negative instruction that loads the negation of a value int...
	29. After a peephole optimization is preformed, the optimized instruction that is substituted for...
	30. Assume we have a peephole optimizer that has n replacement patterns. The most obvious approac...
	Suggest an alternative implementation, based on hashing, that is largely independent of n. That i...




