
CS 701
Final Exam

Thursday, December 11, 2003

11:00 a.m. — 1:00 p.m.

2321 Engineering Hall

Instructions
Answer question #1 and any three others. (If you answer more, only the first four will

count.) Point values are as indicated. Please try to make your answers neat and coher-

ent. Remember, if we can’t read it, it’s wrong. Partial credit will be given, so try to put

something down for each question (a blank answer always gets 0 points!).

1. (1 point)

In a microprocessor, an I-cache holds:

(a) Ink.

(b) Ice Cream.

(c) Irish coffee.

(d) Instructions.

2. (a) (5 points)

In the following loop, live variable analysis would determine the assignment to x in

the loop body to be live, even though x is not used outside the loop. Explain why.
while (...) {

x = x+1;
}
x = 100;

(b) (28 points)

A variable that is not live is considered dead. A concept related to dead variables

is that of a faint variable. At any point faint variables are a superset of dead vari-

ables. A variable x at a particular point is faint if it is dead at that point or if it a

live only because it is used in an assignment to a faint variable. A variable used in

a control predicate or a print statement is never faint at the point at which it is

used.

Call a variable that is not faint truly live. True-liveness analysis identifies the mini-

mal set of truly-live variables at each basic block. Give a data flow framework for

determining true-liveness, That is, give the solution lattice, direction, transfer

functions and meet operation necessary to compute trulyLiveIN(n) and tru-
lyLiveOut(n) for n∈basicBlocks . Illustrate your truly live analysis on the

code fragment of part (a).

3. (a) (23 points)

A key step in putting a program in SSA (static single assignment) form is

placement of the φ functions. Assume that all assignments to variables have been

rewritten so that each variable is now assigned to exactly once. Give an algorithm

to determine, for a set of variables x0, ... ,xn derived from a single variable x , where

to place φ functions and the appropriate arguments for each φ. How are the

arguments (the xi values) of each φ determined?

(b) (10 points)

Show that once a program is in SSA form, reaching definition analysis is greatly

simplified. In particular no analyses beyond those needed to put a program in SSA

form are needed to determine which definitions to a variable reach a given use of

that variable.

4. This question involves partial redundancy elimination. The data flow equations that

define partial redundancy are listed at the end of this question.

(a) (10 points)

Assume that expression e is computed and used in block b. However, e is neither

computed nor used again on any path from b to an exit node. Show that partial

redundancy elimination will never add a computation of e into any block from b

to an exit node (including b).

(b) (23 points)

Assume that expression e is computed and used in block b. However, e is neither

computed nor used on any path from b0 to b. Show that partial redundancy elimi-

nation will never add a computation of e into any block from b0 to b (excluding b).

PPOutb = 0 for all exit blocks

=AND PPInk
k∈ succ(b)

PPInb = 0 for b0 (the start block)

= Constb AND (AntLocb or (Transpb AND PPOutb)

AND (PPOutp OR AvOutp)
p∈ pred(b)

Constb = AntInb AND

[PavInb OR (Transpb and ¬ AntLocb)]

Insertb = PPOutb AND (¬ AvOutb) AND (¬ PPInb OR ¬ Transpb)

Removeb = AntLocb AND PPInb

Partial Redundancy Equations
-2-

5. The languages C and C++ allow function pointers. A function pointer points to a func-

tion rather than an area of memory. It is used to indirectly access and call a function.

Function parameters may be simulated using function pointers. For example, the dec-

laration

int (*fp)();
declares that fp may point to any integer valued function of no arguments.

It is often the case that an optimization requires an accurate estimate of what functions

a function pointer might access. That is, if we see a call

(*fp)();
we want to know what functions might actually be activated.

We will focus on two kinds of assignments: fp = function; and fp1 = fp2 ;

The first assignment binds fp to point to a particular known function, while the sec-

ond kind of assignment copies the function pointed to by fp2 into fp1 .

To simplify our analysis, we will assume only one assignment to a pointer variable

occurs in each basic block (blocks can be split, as needed, to guarantee this).

We wish to formulate a data flow problem that will determine, for a given function

pointer, the set of functions it might access in each basic block.

(a) (13 points)

Give a data flow framework (solution lattice, direction, transfer function and meet

operation) that can be used to solve the “points to” problem described above.

(b) (10 points)

Is the data flow problem you formulated distributive? If it is, explain carefully

why. If it is not, give a simple counter example.

(c) (10 points)

Is the data flow problem you formulated rapid? If it is, explain carefully why. If it

is not, give a simple counter example.

6. This question involves a variety of trees and graphs used in data flow analysis and

optimization. You will use the following control flow graph to illustrate the answers to

parts (a) to (c):

C

D E

F

G

B

A

H

-3-

(a) (11 points)

Explain how a DFST (depth-first spanning tree) is computed for a control flow

graph. Illustrate your solution on the above control flow graph.

(b) (11 points)

Explain how a postdominator tree is computed for a control flow graph. Illustrate

your solution on the above control flow graph.

(c) (11 points)

Explain how a control dependence graph is computed for a control flow graph.

Illustrate your solution on the above control flow graph.
-4-

	CS 701
	Final Exam
	1. (1 point)
	2. (a) (5 points) In the following loop, live variable analysis would determine the assignment to...
	(b) (28 points) A variable that is not live is considered dead. A concept related to dead variabl...
	3. (a) (23 points)
	4. This question involves partial redundancy elimination. The data flow equations that define par...

	(a) (10 points) Assume that expression e is computed and used in block b. However, e is neither c...
	(b) (23 points) Assume that expression e is computed and used in block b. However, e is neither c...
	5. The languages C and C++ allow function pointers. A function pointer points to a function rathe...

	(a) (13 points) Give a data flow framework (solution lattice, direction, transfer function and me...
	(b) (10 points) Is the data flow problem you formulated distributive? If it is, explain carefully...
	(c) (10 points) Is the data flow problem you formulated rapid? If it is, explain carefully why. I...
	6. This question involves a variety of trees and graphs used in data flow analysis and optimizati...

	(a) (11 points) Explain how a DFST (depth-first spanning tree) is computed for a control flow gra...
	(b) (11 points) Explain how a postdominator tree is computed for a control flow graph. Illustrate...
	(c) (11 points) Explain how a control dependence graph is computed for a control flow graph. Illu...

