
Efficient Instruction Scheduling for a Pipelined Architecture

Phillip B. Gibbons* & Steven S. Muchnick**

Hewlett-Packard Laboratories
150 1 Page Mill Road

Palo Alto, CA 94304-1181

Abstract

As part of an effort to develop an optimizing compiler for
a pipelined architecture, a code reorganization algorithm has
been developed that significantly reduces the number of run-
time pipeline interlocks. In a pass after code generation, the
algorithm uses a dag representation to heuristically schedule
the instructions in each basic block.

Previous algorithms for reducing pipeline interlocks have
had worst-case runtimes of at least O(n4). By using a dag
representation which prevents scheduling deadlocks and a
selection method that requires no lookahead, the resulting algo-
rithm reorganizes instructions almost as effectively in practice,
while having an O(n') worst-case runtime.

1. Introduction

The architecture we have studied has many features which
enable fast execution of programs, chief among them the use of
pipelining. Whereas in a more traditional architecture each
instruction is fetched, decoded and executed before the next
one is fetched, in a pipelined architecture [KogSl] the execu-
tion cycles of distinct instructions may overlap one another.
Problems arise if the results of one instruction are needed by
another before the first has finished executing or if a specific
machine resource is needed by two instructions at once. In
such a case, the second instruction must wait for the first to
complete, and we say a pipeline hazard has occurred.

*Current Address: ConpIer Science Division, University of California, Berkeley, CA

94720.
**Curreal Address: Sun hlicmsystems, Inc., 2550 Garcia Avenw, Mountain View. CA
94043.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

@ 1986 ACM 0-89791-197-0/8~6OO-Ool~ 75~

Fortunately, not all pairs of consecutive instructions cause
pipeline hazards. In the architecture under consideration, the
only hazards are register- and memory-based: 1) loading a
register from memory followed by using that register as a
source, 2) storing to any memory location followed by loading
from any location, and 3) loading from memory followed by
using any register as the target of an arithmetic/logical instruc-
tion or a load/store with address modification. Each of these
pipeline hazards causes some potential implementation of the
architecture to stall or interlock for one pipe cycle.

There are three approaches to reducing the number of pipe-
line interlocks incurred in executing a program, distinguished
by the agent and the time when the code is inspected: either
special hardware can do it during execution, or a person or
software can do it before execution. The hardware approach
has been used in the Control Data 6600 [Tho64] and the IBM
360/91 [Tom67], two of the fastest machines of their day.
While reasonably effective, this approach is very expensive
and can only span relatively short code sequences. Rymarczyk
[Rym82] has presented guidelines for assembly language pro-
grammers to avoid pipeline interlocks. This approach is
impractical in general, since it is very time-consuming and
error-prone. The use of software to detect and remove inter-
locks is, at present, the most practical and effective approach.
Our goal was to design an efficient algorithm for reordering
instructions at compile time that significantly reduces the
number of interlocks occurring when code is executed on any
implementation of the subject architecture.

Most research on compile-time code reorganization has
concentrated on the scheduling and compacting of microcode,
which begins with a correct sequence of vertical microinstruc-
tions and packs them into a (shorter) sequence of horizontal
microinstructions. Although pipeline-oriented scheduling is
similar to microcode compaction in some respects, there are
enough differences that algorithms for it pav81, Tok81,
Veg821 are not adequate for instruction scheduling. Research
on compile-time pipeline scheduling is relatively sparse, with
the most significant works being [Ary83], [Aus82], [Gro83],
[Hen831 and [Sit78]. [Gro83] presents an excellent and rela-
tively thorough survey of research on this subject. In [Ary83],
an algorithm with exponential worst-case runtime is presented
for optimally scheduling instructions for a pipelined vector

11

processor. [Aus82] describes pipeline scheduling performed
during code generation. The others [Gro83, Hen83, Sit781
(and our own work) are all concerned with scheduling per-
formed during a pass after code generation and register alloca-
tion. According to the empirical evidence [Gro83], this can be
significantly more effective than the technique of [Aus82].
[Gro83] and pen831 describe a powerful heuristic scheduling
algorithm that uses lookahead to avoid deadlock, with 0 (a’)
worst-case runtime, where II is the number of machine instruc-
tions in the basic block being scheduled. By using a graph
representation which prevents scheduling deadlocks and a
selection method that does not require lookahead, we have
developed an algorithm which eliminates nearly as many inter-
locks as theirs while having an O(n2) worst-case runtime and
an observed linear runtime in practice,

2. TheIssues

There are two issues which must be addressed when
designing an algorithm for instruction scheduling: 1) how to
express the constraints which must be satisfied by any legal
reordering, and 2) how to determine the order in which instruc-
tions are scheduled, subject to the constraints.

Clearly, instructions in a program cannot be reordered
arbitrarily. Certain instructions must remain ahead of other
instructions in the resulting code sequence for the overall effect
of the program to remain unchanged. The first issue, then,
involves developing a representation that expresses the maxi-
mal freedom to rearrange instructions without compromising
correctness.

Once the constraints on the reordering have been deter-
mined, a method is needed to choose among the possible reord-
erings, while maintaining reasonable runtimes for the
scheduler.

3. The Assumptions

Our architecture has hardware hazard detection and an
interlock mechanism, so it is not mandatory that all pipeline
hazards be removed. Moreover, the resulting code is intended
to run on a range of possible implementations with differing
sets of interlocks. This makes it impossible in general to
remove all interlocks for all implementations, if one desires to
obtain code which will run well on all of them without
rescheduling. Thus, our goal was to develop a heuristic algo-
rithm that performs well for all implementations, while perhaps
suboptimally for any particular one.

To simplify the task, we made some assumptions as to how
the machine code references memory. For instance, while
there may be multiple base registers, each memory location is
assumed to be referenced via an offset from only one. Further-
more, pointer references are assumed to overlap all memory
locations. This preserves correctness in the presence of worst-
case aliasing. These assumptions simplify determination of the
reordering constraints in practice, but, as will be seen below,
do not alter the worst-case runtime bound of 0 (n 3. Also, the
assumptions can be effectively replaced with information about
the patterns of memory aliasing obtaining in a program, such

as is produced by the compilers described in [Cou86] and
[Spi71].

4. The Approach

The overall approach divides the problem into three steps:
1) divide each procedure into basic blocks’, 2) construct a
directed acyclic dependency graph expressing the scheduling
constraints within each basic block, and 3) schedule the
instructions in the block, guided by the applicable heuristics,
using no lookahead in the graph.

Expressing Constraints: The Dependency Dug

We construct for each basic block a directed acyclic graph
(dag) whose nodes are the instructions within the block and
whose edges represent serialization dependencies between
instructions. An edge leading from instruction u to instruction
b indicates that (I must be executed before b to preserve
correctness of the overall program.

An example code sequence (with source operands written
before destination operands) and its dependency dag (with
roots at the top) are shown in Figs. 1 and 2. For any particular
resource, such as a register, the dependency dag serializes
definitions vs. definitions (e.g. instruction 5 vs. instruction 9 in
Fig. 2), definitions vs. uses (3 vs. 8), and uses vs. definitions (4
vs. 6). The dags take into account all serialization constraints,
including register dependencies, memory dependencies, pro-
cessor state-modifying instructions and carry/borrow depen-
dencies2.

1 add #l,rl,r2
2 add #12,sp,sp
3 store rO,A
4 load -4(SP)J3
5 load -8(sp)~4
6 add #8,sp,sp
7 store r2,Wp)
8 load A,r5
9 add #l&r4

Figure 1. Sample code sequence.

In general, the dags are constructed by scanning backward
across a basic block, noting each definition or use of a resource
and then later the definitions or uses which must precede it.
Thus, for example, in Fig. 2 an arrow is inserted between 2 and
4 because instruction 2 defines the stack pointer sp and 4 is the

‘This step is usually performed by any optimizing compiler and hence
is considered to be “free”. So as to make basic blocks as long as
possible, our compiler does not consider a procedure call or an
instruction which conditionally skips a following (non-branch)
instruction to end a basic block.
ZThe architecture includes several instructions which set or use
~arry/borrow bits in the processor state. The collection of these bits is
a unique processor resource, like a register, and hence requires
serialization. However, as will be seen below, they require special
handling in the scheduler.

12

next instruction in the linear sequence which either uses or
defines it3. Carry/borrow dependencies are handled specially
in constructing the dags, since carries and borrows are very fre-
quently defined but only rarely used. Serializing all
carry/borrow definitions against each other would be unduly
constraining. Instead, a special subgraph is generated within
the dag for each instruction which uses a carry or borrow; the
subgraph includes all the instructions which must appear
between the use and the corresponding definition (or the begin-
ning of the basic block if no definition is found in it). Scanning
backward across the instructions of a basic block facilitates this
special handling of the carry/borrow bits.

Figure 2. Dependency dag for code in Fig. 1.

Our dags differ from those of [Gro83, Hen831 primarily in
that we serialize definitions vs. definitions, while they do not.
In the absence of liveness information, this serialization is
essential, at least for the final definition of a resource in a
basic block. It also avoids the possibility of deadlocks in the
scheduling algorithm.

Selecting an Order: The Static Evaluator

As long as the instructions in a basic block are scheduled
in some topological sort [Knu68] of the dependency dag, the
overall effect* of the block is indistinguishable from its execu-
tion in the original order.

Our algorithm selects instructions to schedule by sweeping
down the dag, beginning at the roots (which represent the
instructions which can possibly be executed first). An instruc-
tion is a candidate for scheduling if all its immediate predeces-
sors in the dag have been scheduled (or if it has no predeces-
sors). Among the candidates at any given time, the “best”
instruction is selected based on the following two guidelines:
1) if possible, an instruction is scheduled that will not interlock
with the one just scheduled, and 2) given a choice, an instruc-
tion is scheduled that is most likely to cause interlocks with

‘A minimal set of edges suffices te represent the dags. The full set of
dependencies is the transitive closure of the binary relation given by
the edges.
4Note the emphasis on “overall effect”. Since we are rearranging
instructions over spans of several statements, there may not be any
points in the resulting instruction sequence corresponding to the ends
of source statements internal to the block. This may impact the user’s
understanding of the state of a program whose execution is interrupted,
either by the occurrence of a fault or during the debugging process.
The interaction of debugging and optimizing transformations has been
considered in fHen81,Ze184].

Intuitively, these properties bias toward selecting instructions
which:

1) may cause interlocks (and hence need to be scheduled
as early as possible, when there is most likely to be a
wide choice of instructions to follow them),

2)

3)

uncover the most potential successors (and hence the
widest possible latitude for future choices), and

balance the progress along the various paths toward
the leaves of the dag (and hence leave the largest
number of choices available at all stages of the pro-
cess).

instructions after it. The first guideline is obvious: it is the
local expression of the overall goal of the scheduling process.
When the second is combined with it, the selections can be
thought of as occurring in pairs comprising an instruction
likely to cause an interlock, followed by one which does not
interlock with it (but which is likely to cause an interlock
itself). In our architecture, for example, the best choice after
an “add” is a “load”, while the best choice after a “store” is
another “store”. These heuristics am incorporated into a
static evaluator which rates individual candidates.

Looking ahead in a basic block to instructions which are
not yet candidates will certainly improve scheduling. Unfor-
tunately, this lookahead dramatically increases worst-case run-
time. Instead, three heuristicsS are used in place of lookahead.
The heuristics express several static local properties of nodes
in a scheduling dag. In order of importance to the scheduling
process, they are:

1) whether an instruction interlocks with any of its
immediate successors in the dag,

2) the number of immediate successors of the instruction,
and

3) the length of the longest path from the instruction to
the leaves of the dag.

An outline of the scheduling algorithm, given a basic block
of machine instructions, is as follows:

1.

2.

3.

make a prepass backward over the basic block to con-
struct the scheduling dag, comparing each instruction
to the nodes of the scheduling dag constructed so f&

put the roots of the dag into the candidate set (an
instruction is a root if it has no predecessors in the
dag)

select the first instruction to be scheduled from the
candidate set, taking into account the instructions
which terminate its predecessor basic blocks and the
static heuristics (applied in the order given in the
preceding paragraph)

‘For a discussion of these and similar heuristics and their effects on
scheduling algorithms in general, see Section 6-8 of [Con67].
%ecalf that the roots of the completed dag represent the instructions
which may appear as the first instruction in the reordered block, so that
construction of the dag (sweeping backward across the block) selects
the leaves lirst.

13

4. while the candidate set is nonempty:

a. evaluate the candidates based on the last instruc-
tion scheduled and the static heuristics (applied in
the order given in the preceding paragraph) and
select the best one

b. emit the selected instruction

c. delete the newly scheduled instruction from the
candidate set and add any newly exposed candi-
dates to it

Running our algorithm on the code in Fig. 1 results in the
schedule 3, 2, 4,5, 8, 1, 6, 7,9 shown in Fig. 3, which reduces
the four interlocks in the original sequence (3 - 4, 5 - 6, 7 - 8
and 8 - 9) to one (8 - 1).

3 store rO,A
2 add #~2,~P,~P
4 load -4(W)J3
5 load -8(sp)~4
8 load A,r5
1 add #l&2
6 add +%SP,SP
7 store rUXv)
9 add #l,rO,r4

Figure 3. Result of Scheduling the Instruction
Sequence in Fig. 1.

5. Computational Complexity of Our Algorithm

The complexity of our instruction scheduler is at worst
0 (nZ) for a basic block of n instructions. To build the depen-
dency dag, in the worst case each instruction must be com-
pared with all the instructions already in the dag. Thus build-
ing the dag is at most O(n*). To schedule the instructions, in
the worst case all unscheduled instructions must be visited
each time an instruction is scheduled. Since evaluating a can-
didate for scheduling is done without lookahead, the visitation
time is O(l), and thus scheduling is O(n*) * O(l) = O(n*).
Actual scheduling time is generally linear in practice; for
example, just over IWO evaluations per instruction are made in
scheduling the Acker benchmark [Hen83].

Hennessy and Gross [Gro83, Hen831 present an instruction
scheduling algorithm with 0(n3 worst-case runtime. The
architecture for which they derived their algorithm imposes
more stringent requirements than ours: the hardware has no
pipeline hazard detection and no interlock mechanism, and the
duration of a pipeline hazard can be more than one cycle.
Under our easier requirements, however, their algorithm is still
001~). Moreover, the algorithm presented here can be
modified to remove all hazards, and hence be effective for their
architecture: simply insert a “no-op” whenever a hazard is
unavoidable. The algorithm can also be extended to handle
multi-cycle pipeline hazards. However, this changes its com-

plexity to O(b) * O(n*), where b is the upper bound on the
duration of a hazard, presumably a constant.

The algorithm presented here is simpler, partly due to the
differences between the dags used. As mentioned above, our
dependency dags are more restrictive than those in [Gro83,
Hen831 in that ours serialize multiple definitions of the same
register (while theirs do not) and consider memory and other
resources, and henie are somewhat less versatile for schedul-
ing. However, our dependency dags prevent any scheduling
deadlocks: there is always an instruction that can be
scheduled, regardless of which instructions have been
scheduled already. Thus the algorithm does not need looka-
head to avoid deadlock. Since the architecture has 32 general
registers and the register allocator uses different registers for
different temporary values as much as possible’, serializing
definitions does not unduly restrict our code.

6. Experience

We implemented the instruction scheduler described above
in C, adding to it a branch scheduler and a floating-point
scheduler. The branch scheduler attempts to fill delay slots fol-
lowing branches with instructions selected from the preceding
basic block or from the target basic blocks. Our experience
with sample code scheduled by it yields the following observa-
tions:

1)

2)

3)

4)

In general the algorithm performs quite well, despite
the comparatively restrictive dags and the lack of loo-
kahead. Without inserting “no-ops”, it removes 15 of
the 19 avoidable interlocks in the code our C compiler
generates for the Acker benchmark. Moreover, for
many of the proposed machine implementations, it
removes 100% of the avoidable interlocks. On the
other end of the scale, it removes only 5 of the 16
avoidable interlocks in the Sieve benchmark.

Our assumptions about memory referencing greatly
improve the overall results. For example, without our
assumption that a single memory location must be
referenced using only a single base register, the algo-
rithm removes only 9 of the 19 avoidable interlocks in
Acker. On the other hand, better aliasing information
greatly improves the effectiveness of the algorithm on
certain programs. With better aliasing information (as
discussed in Section 3 above), it can remove 10 of the
16 avoidable interlocks in Sieve.

The carry/borrow subgraphs do not significantly
improve scheduling for most programs. Substantial
improvements come only for programs which are com-
putationally intensive. The improvements in these
cases, however, seem to warrant the small additional
cost of constructing the subgraphs.

Using the more versatile dags of [Gro83, Hen831 mar-
ginally improves the effectiveness of the instruction
scheduler on our architecture. Using the same

‘[Gm83, pp. 62 - 631 shows a real-life example where register reuse
policy makes a dramatic difference in scheduling.

14

assumptions about memory referencing and the same
heuristics for selection when a choice is available
among instructions, our algorithm and that given in
[Gro83, Hen83], in fact, produce identical results on
the Acker, Sieve and Fibonacci benchmarks.

Additional information on the performance of this algo-
rithm can be found in the paper [Joh86] in this proceedings.

7. Conclusions

We have presented a highly efficient instruction scheduling
algorithm for a pipelined architecture which demonstrates the
effectiveness of judiciously chosen heuristics and the balancing
of policies in other parts of the compilation process (e.g. the
register reuse policy) with the approach to scheduling.

Another benefit of this approach to instruction scheduling
is that our dependency dags are useful for many other code
optimizations. For example, candidates for code hoisting and
loop-invariant code motion can readily be discovered using
them. Also, a peephole optimizer based on the dags can out-
perform one based on linear code sequences: the dags expose
more combinations of instructions that can be folded, since
they tend to bring related instructions closer together.

One issue we have not pursued is the extension of instruc-
tion scheduling across basic blocks, which is of particular
interest for architectures with long pipelines and either multi-
ple execution units or branch prediction (or both). Techniques
for extended basic blocks would seem to be a relatively
straightforward extension. The trace scheduling techniques of
fFis81] arc relevant as they function, in effect, to lengthen
basic blocks.

Another area of interest would be to develop a model of an
average instruction sequence and from it an expected runtime
for the algorithm.

Acknowledgements

The work described in this paper was conducted during
development of an early prototype optimizer for the HP Preci-
sion Architecture. The work has been extended, modified and
tuned at Hewlett-Packard during the past two years as part of
the ongoing development of a product-quality optimizer. See
[Joh86] for more recent information and additional perfor-
mance data.

We thank Carol Hammond, Alexand Wu and Robert Bal-
lance for their contributions to the development and implemen-
tation of the scheduling algorithm and James Gosling, John
Hennessy, Brian Reid and Lawrence Weber for their helpful
comments on an earlier version of this paper.

FM831

[Aus

[Con671

[Cou86]

[Dav81]

[F&81]

[Gro83]

[Hen8 l]

[Hen831

[Joh86]

[Knu68]

[Kog811

R-W

[Sit781

Arya, S. Optimal Instruction Scheduling for a
Class of Vector Processors: An Integer Program-
ming Approach. Tech. Rept. CRL-TR- 19-83, Com-
puter Research Laboratory, the Univ. of Michigan,
Ann Arbor, April 1983.

Auslander, M. & M. Hopkins. An Overview of the
PL.8 Compiler. Proc. ACM SIGPLAN Symp. on
Compiler Construction, Boston, June 1982, pp. 22 -
31.

Conway, R.W., W.L. Maxwell & L.W. Miller,
Theory of Scheduling, Addison-Wesley, Reading,
MA, 1967.

Coutant, D.S. Retargetable High-Level Alias
Analysis, Proc. ACM Symp. on Print. of Prog.
Lang., St. Petersburg Beach, FL, January 1986, pp.
llO- 118.

Davidson, S., D. Landskov, B.D. Shriver & P.W.
Mallett. Some Experiments in Local Microcode
Compaction for Horizontal Machines. IEEE Trans.
on Computers, Vol. C-30, No. 7, July 1981, pp. 460
- 477.

Fisher, J.A. Trace Scheduling: A Technique for
Global Microcode Compaction. IEEE Trans. on
Computers, Vol. C-30, No. 7, July 1981, pp. 478 -
490.

Gross, T.R. Code Optimization of Pipeline Con-
straints. Tech. Rept. 83-255, Computer Systems
Lab., Stanford Univ., Dec. 1983.

Hennessy, J.L. Symbolic Debugging of Optimized
Code, ACM Trans. on Prog. Lang. and Sys., Vol. 3,
No. 1, Jan. 1981, pp. 200 - 206.

Hennessy, J.L. & T.R. Gross. Postpass Code
Optimization of Pipeline Constraints. ACM Trans,
on Prog. Lang. ana’ Sys, Vol. 5, NO. 3, July 1983,
pp. 422 - 448.

Johnson, M.S. & T.C. Miller. Effectiveness of a
Machine-Level, Global Optimizer, Proc. of the
SIGPLAN ‘86 Con.. on Comp. Constr., June 1986.

Knuth, DE. Fundamental Algorithms, Addison-
Wesley, Reading, MA, p. 258.

Kogge, P.M. The Architecture of Pipelined Corn--
Puters, McGraw-Hill, New York, 1981.

Rymarczyk, J.W. Coding Guidelines for Pipelined
RWeSsOW Proc. of the Symp. on Arch. Supt. for
prog. Lang. and Oper. Syst., Palo Alto, CA, March
1982, pp. 12 - 19.

Sites, R.L. Instruction Or&ring for the &q-l

Computer. Tech. Rept. 78-CS-023, Univ. of Cali-
fornia, San Diego, July 1978.

15

[Spi’ll] Spillman, Thomas C., Exposing Side-Effects in a
PUI Optimizing Compiler, Information Processing
81, North-Holland, 1972, pp. 376 - 381.

[Tho64] Thornton, J.E. Parallel Operation in the Control
Data 6600, Proc. Fall Joint Comp. Conf., Part 2,
Vol. 26, 1964, pp. 33 - 40.

[TokSl] Tokoru, M., E. Tamura & T. Takizuka. Optimiza-
tion of Microprograms. IEEE Trans. on Comput-
ers, Vol. C-30, No. 7, July 1981, pp. 491 - 504.

[Tom671 Tomasulo, R.M. An Efficient Algorithm for
Exploiting Multiple Arithmetic Units, IBM J. of
Res. and Devt., Vol. 11, No. 1, Jan. 1967, pp. 25 -
33.

[Veg82] Vegdahl, S. Local Code Generation ana’ Compac-
tion in Optimizing Microcode Compilers, Ph.D.
thesis, Carnegie-Mellon Univ., Dec. 1982.

[i!e184] Zellweger, P.T. Interactive Source-Level Debug-
ging of Optimized Programs, Research Report
CSL-84-5, Xerox Palo Alto Research Center, Palo
Alto, CA, May 1984.

16

