
1CS 701 Fall 2005
©

CS 701

Charles N. Fischer

Fall 2005

http://www.cs.wisc.edu/~fischer/cs701.html

2CS 701 Fall 2005
©

Class Meets
Tuesdays & Thursdays, 11:00 — 12:15
3418 Engineering Hall

Instructor
Charles N. Fischer
6367 Computer Sciences
Telephone: 262-6635
E-mail: fischer@cs.wisc.edu
Office Hours:

10:30 - Noon, Mondays &
Wednesdays, or by appointment

3CS 701 Fall 2005
©

Teaching Assistant
Anne Mulhern
3361 Computer Sciences
Telephone: 446-3841
E-mail: mulhern@cs.wisc.edu
Office Hours:

1:00 - 3:00
 Thursdays or by appointment

4CS 701 Fall 2005
©

Key Dates
• September 27: Project 1 due

• October 25: Project 2 due (tentative)

• November 1: Midterm (tentative)

• November 29: Project 3 due (tentative)

• December 15: Project 4 due

• December ??: Final Exam, date to be
determined

5CS 701 Fall 2005
©

Class Text
There is no required text.
Handouts and Web-based reading will
be used.

Suggested reference:

Advanced Compiler Design &
Implementation,
 by Steven S. Muchnick,

 published by Morgan Kaufman.

6CS 701 Fall 2005
©

Instructional Computers
Departmental SPARC Processors
(n01.cs.wisc—n16.cs.wisc) are
assigned to this class.
Your own workstation probably isn’t
SPARC-based, so you will need to log
onto a machine that uses a SPARC
processor to do SPARC-specific
assignments.

7CS 701 Fall 2005
©

CS701 Projects
1. SPARC Code Optimization
2. Global Register Allocation

 (using Graph Coloring)
3. Global Code Optimizations
4. Individual Research Topics

8CS 701 Fall 2005
©

Academic Misconduct Policy
• You must do your assignments—no

copying or sharing of solutions.

• You may discuss general concepts and
Ideas.

• All cases of Misconduct must be
reported.

• Penalties may be severe.

9CS 701 Fall 2005
©

Reading Assignment
• Read Chapters 0-6 and Appendices G&H

of the SPARC Architecture Manual. Also
skim Appendix A.

• Read section 15.2 of Chapter 15.

• Read Assignment #1.

10CS 701 Fall 2005
©

Overview of Course Topics
1. Register Allocation

Local Allocation
Avoid unnecessary loads and stores
within a basic block. Remember and
reuse register contents.
Consider effects of aliasing.

Global Allocation
Allocate registers within a single
subprogram. Choose “most profitable”
values. Map several values to the same
register.

Interprocedural Allocation
Avoid saves and restores across calls.
Share globals in registers.

11CS 701 Fall 2005
©

2. Code Scheduling
We can reorder code to reduce latencies
and to maximize ILP (Instruction Level
Parallelism). We must respect data
dependencies and control dependencies.

ld [a],%r1 ld [a],%r1

add %r1,1,%r2 mov 3,%r3

mov 3,%r3 add %r1,1,%r2

(before) (after)

12CS 701 Fall 2005
©

3. Automatic Instruction Selection
How do we map an IR (Intermediate
Representation) into Machine Instructions?
Can we guarantee the best instruction
sequence?

Idea—Match instruction patterns
(represented as trees) against an IR that is
a low-level tree. Each match is a generated
instruction; the best overall match is the
best instruction sequence.

13CS 701 Fall 2005
©

Example:
a=b+c+1;

In IR tree form:

Generated code:
ld [%fp+b offset],%r1

ld [c adr],%r2

add %r1,%r2,%r3

add %r3,1,%r4

st %r4,[a adr]

Why use four different registers?

=

aadr

+

↑↑

+ 1

cadr

+

%fp boffset

14CS 701 Fall 2005
©

4. Peephole Optimization
Inspect generated code sequences and
replace pairs/triples/tuples with better
alternatives.

ld [a],%r1 ld [a],%r1
mov const,%r2 add %r1,const,%r3
add %r1,%r2,%r3

(before) (after)

mov 0,%r1 OP %g0,%r2,%r3
OP %r1,%r2,%r3

(before) (after)

But why not just generate the better code
sequence to begin with?

15CS 701 Fall 2005
©

5. Cache Improvements
We want to access data & instructions
from the L1 cache whenever possible;
misses into the L2 cache (or memory) are
expensive!

We will layout data and program code with
consideration of cache sizes and access
properties.

6. Local & Global Optimizations
Identify unneeded or redundant code.
Decide where to place code.
Worry about debugging issues (how
reliable are current values and source line
numbers after optimization?)

16CS 701 Fall 2005
©

7. Program representations
• Control Flow Graphs

• Program Dependency Graphs

• Static Single Assignment Form (SSA)
Each program variable is assigned to in
only one place.
After an assignment xi = y j , the
relation xi = y j always holds.

Example:

if (a) if (a)
 x = 1 x 1 =1

else x = 2; else x 2 =2;

print(x) x 3 = φ(x 1,x 2)

 print(x 3)

17CS 701 Fall 2005
©

8. Data Flow Analysis
Determine invariant properties of
subprograms; analysis can be extended to
entire programs.

Model abstract execution.

Prove correctness and efficiency properties
of analysis algorithms.

18CS 701 Fall 2005
©

Review of Compiler
Optimizations
1. Redundant Expression Elimination

(Common Subexpression Elimination)
Use an address or value that has been
previously computed. Consider control and
data dependencies.

2. Partially Redundant Expression (PRE)
Elimination
A variant of Redundant Expression
Elimination. If a value or address is
redundant along some execution paths, add
computations to other paths to create a
fully redundant expression (which is then
removed).
Example:
if (i > j)

a[i] = a[j];

a[i] = a[i] * 2;

19CS 701 Fall 2005
©

3. Constant Propagation
If a variable is known to contain a
particular constant value at a particular
point in the program, replace references to
the variable at that point with that
constant value.

4. Copy Propagation
After the assignment of one variable to
another, a reference to one variable may be
replaced with the value of the other
variable (until one or the other of the
variables is reassigned).
(This may also “set up” dead code
elimination. Why?)

5. Constant Folding
An expression involving constant (literal)
values may be evaluated and simplified to a
constant result value. Particularly useful
when constant propagation is performed.

20CS 701 Fall 2005
©

6. Dead Code Elimination
Expressions or statements whose values or
effects are unused may be eliminated.

7. Loop Invariant Code Motion
An expression that is invariant in a loop
may be moved to the loop’s header,
evaluated once, and reused within the loop.
Safety and profitability issues may be
involved.

8. Scalarization (Scalar Replacement)
A field of a structure or an element of an
array that is repeatedly read or written may
be copied to a local variable, accessed using
the local, and later (if necessary) copied
back.
This optimization allows the local variable
(and in effect the field or array
component) to be allocated to a register.

