
15CS 701 Fall 2005
©

5. Cache Improvements
We want to access data & instructions
from the L1 cache whenever possible;
misses into the L2 cache (or memory) are
expensive!

We will layout data and program code with
consideration of cache sizes and access
properties.

6. Local & Global Optimizations
Identify unneeded or redundant code.
Decide where to place code.
Worry about debugging issues (how
reliable are current values and source line
numbers after optimization?)

16CS 701 Fall 2005
©

7. Program representations
• Control Flow Graphs

• Program Dependency Graphs

• Static Single Assignment Form (SSA)
Each program variable is assigned to in
only one place.
After an assignment xi = y j , the
relation xi = y j always holds.

Example:

if (a) if (a)
 x = 1 x 1 =1

else x = 2; else x 2 =2;

print(x) x 3 = φ(x 1,x 2)

 print(x 3)

17CS 701 Fall 2005
©

8. Data Flow Analysis
Determine invariant properties of
subprograms; analysis can be extended to
entire programs.

Model abstract execution.

Prove correctness and efficiency properties
of analysis algorithms.

18CS 701 Fall 2005
©

Review of Compiler
Optimizations
1. Redundant Expression Elimination

(Common Subexpression Elimination)
Use an address or value that has been
previously computed. Consider control and
data dependencies.

2. Partially Redundant Expression (PRE)
Elimination
A variant of Redundant Expression
Elimination. If a value or address is
redundant along some execution paths, add
computations to other paths to create a
fully redundant expression (which is then
removed).
Example:
if (i > j)

a[i] = a[j];

a[i] = a[i] * 2;

19CS 701 Fall 2005
©

3. Constant Propagation
If a variable is known to contain a
particular constant value at a particular
point in the program, replace references to
the variable at that point with that
constant value.

4. Copy Propagation
After the assignment of one variable to
another, a reference to one variable may be
replaced with the value of the other
variable (until one or the other of the
variables is reassigned).
(This may also “set up” dead code
elimination. Why?)

5. Constant Folding
An expression involving constant (literal)
values may be evaluated and simplified to a
constant result value. Particularly useful
when constant propagation is performed.

20CS 701 Fall 2005
©

6. Dead Code Elimination
Expressions or statements whose values or
effects are unused may be eliminated.

7. Loop Invariant Code Motion
An expression that is invariant in a loop
may be moved to the loop’s header,
evaluated once, and reused within the loop.
Safety and profitability issues may be
involved.

8. Scalarization (Scalar Replacement)
A field of a structure or an element of an
array that is repeatedly read or written may
be copied to a local variable, accessed using
the local, and later (if necessary) copied
back.
This optimization allows the local variable
(and in effect the field or array
component) to be allocated to a register.

21CS 701 Fall 2005
©

9. Local Register Allocation
Within a basic block (a straight line
sequence of code) track register contents
and reuse variables and constants from
registers.

10. Global Register Allocation
Within a subprogram, frequently accessed
variables and constants are allocated to
registers. Usually there are many more
register candidates than available registers.

11. Interprocedural Register Allocation
Variables and constants accessed by more
than one subprogram are allocated to
registers. This can greatly reduce call/return
overhead.

22CS 701 Fall 2005
©

12. Register Targeting
Compute values directly into the intended
target register.

13. Interprocedural Code Motion
Move instructions across subprogram
boundaries.

14. Call Inlining
At the site of a call, insert the body of a
subprogram, with actual parameters
initializing formal parameters.

15. Code Hoisting and Sinking
If the same code sequence appears in two
or more alternative execution paths, the
code may be hoisted to a common
ancestor or sunk to a common successor.
(This reduces code size, but does not reduce
instruction count.)

23CS 701 Fall 2005
©

16. Loop Unrolling
Replace a loop body executed N times with
an expanded loop body consisting of M
copies of the loop body. This expanded loop
body is executed N/M times, reducing loop
overhead and increasing optimization
possibilities within the expanded loop body.

17. Software Pipelining
A value needed in iteration i of a loop is
computed during iteration i-1 (or i-2, ...).
This allows long latency operations
(floating point divides and square roots,
low hit-ratio loads) to execute in parallel
with other operations. Software pipelining
is sometimes called symbolic loop unrolling.

24CS 701 Fall 2005
©

18. Strength Reduction
Replace an expensive instruction with an
equivalent but cheaper alternative. For
example a division may be replaced by
multiplication of a reciprocal, or a list
append may be replaced by cons
operations.

19. Data Cache Optimizations
• Locality Optimizations

Cluster accesses of data values both
spacially (within a cache line) and
temporally (for repeated use).
Loop interchange and loop tiling improve
temporal locality.

• Conflict Optimizations
Adjust data locations so that data used
consecutively and repeatedly don’t share
the same cache location.

25CS 701 Fall 2005
©

20. Instruction Cache Optimizations
Instructions that are repeatedly re-
executed should be accessed from the
instruction cache rather than the
secondary cache or memory. Loops and
“hot” instruction sequences should fit
within the cache.
Temporally close instruction sequences
should not map to conflicting cache
locations.

26CS 701 Fall 2005
©

SPARC Overview
• SPARC is an acronym for
 Scalable Processor ARChitecture

• SPARCs are load/store RISC processors
Load/store means only loads and
stores access memory directly.
RISC (Reduced Instruction Set
Computer) means the architecture is
simplified with a limited number of
instruction formats and addressing
modes.

27CS 701 Fall 2005
©

• Instruction format:
add %r1,%r2,%r3

Registers are prefixed with a %

Result is stored into last operand.

ld [adr],%r1

Memory addresses (used only in loads
and stores) are enclosed in brackets

• Distinctive features include Register
Windows and Delayed Branches

28CS 701 Fall 2005
©

Register Windows
The SPARC provides 32 general-purpose
integer registers, denoted as %r0 through
%r31.
These 32 registers are subdivided into 4
groups:
 Globals: %g0 to %g7

 In registers: %i0 to %i7

 Locals: %l0 to %l7

 Out registers: %o0 to %o7

There are also 32 floating-point registers,
%f0 to %f31 .

A SPARC processor has an implementation-
dependent number of register windows,
each consisting of 16 distinct registers.
The "in", "local" and "out" registers that
are accessed in a procedure depend on the
current register window. The "global"

29CS 701 Fall 2005
©

registers are independent of the register
windows (as are the floating-point
registers).
A register window may be pushed or
popped using SPARC save and restore
instructions.
After a register window push, the “out”
registers become “in” registers and a fresh
set of “local” and “out” registers is created:

In Local Out

In Local OutIn Local

Before save :

After save

(old) (old) (new) (new)

30CS 701 Fall 2005
©

Why the overlap between “in” and “out”
registers? It’s a convenient way to pass
parameters—the caller puts parameter
values in his “out” registers. After a call
(and a save) these values are
automatically available as “in” registers in
the newly created register window.

SPARC procedure calls normally advance
the register window. The "in" and "local"
registers become hidden, and the "out"
registers become the "in" registers of the
called procedure, and new "local" and
"out" registers become available.

A register window is advanced using the
save instruction, and rolled back using
the restore instruction. These
instructions are separate from the
procedure call and return instructions,
and can sometimes be optimized away.

31CS 701 Fall 2005
©

For example, a leaf procedure—one that
contains no calls—can be compiled without
use of save and restore if it doesn’t
need too many registers. The leaf procedure
must then make do with the caller’s
registers, modifying only those the caller
treats as volatile.

