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Reading Assignment
S. Kurlander, T. Proebsting and C.
Fischer, “Efficient Instruction
Scheduling for Delayed-Load
Architectures,” ACM Transactions on
Programming Languages and Systems,
1995. (Linked from class Web page)
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“On the Fly” Local Register
Allocation

Allocate registers as needed during
code generation.
Partition registers into 3 classes.

• Allocatable
Explicitly allocated and freed; used to
hold a variable, literal or temporary.
On SPARC: Local registers & unused
In registers.

• Reserved
Reserved for specific purposes by OS or
software conventions.
On SPARC: %fp , %sp, return address
register, argument registers, return value
register.
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• Work
Volatile—used in short code sequences
that need to use a register.
On SPARC: %g1 to %g4, unused out
registers.

Register Targeting
Allow “end user” of a value to state a
register preference in AST or IR.

or
Use Peephole Optimization to
eliminate unnecessary register moves.

or
Use preferencing in a graph coloring
register allocator.
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Register Tracking
Improve upon standard getReg/
freeReg allocator by tracking
(remembering) register contents.

Remember the value(s) currently held
within a register; store information in
a Register Association List.

Mark each value as Saved (in
memory) or Unsaved (in memory).

Each value in a register has a Cost.
This is the cost (in instructions) to
restore the value to a register.
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The cost of allocating a register is the
sum of the costs of the values it
holds.

  Cost(register) = Σ cost(values)
values ∈ register

When we allocate a register, we will
choose the cheapest one.

If 2 registers have the same cost, we
choose that register whose values
have the most distant next use.
(Why most distant?)
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Costs for the SPARC
0     Dead Value
1     Saved Local Variable
1     Small Literal Value (13 bits)
2     Saved Global Variable
2     Large Literal Value (32 bits)
2     Unsaved Local Variable
4     Unsaved Global Variable
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Register Tracking Allocator
reg getReg() {
  if ( ∃ r ∈ regSet and cost(r) == 0)
      choose(r)
  else {
      c = 1;
      while(true) {

if ( ∃ r ∈ regSet and cost(r) == c){

            choose r with cost(r) == c and
                  most distant next use of
                  associated values;
            break;
         }
         c++;
      }
      Save contents of r as necessary;
  }
  return r;
}
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• Once a value becomes dead, it may be
purged from the register association list
without any saves.

• Values no longer used, but unsaved, can
be purged (and saved) at zero cost.

• Assignments of a register to a simple
variable may be delayed—just add the
variable to the Register’s Association List
entry as unsaved.

The assignment may be done later or
made unnecessary (by a later assignment
to the variable)

• At the end of a basic block all unsaved
values are stored into memory.
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Example
int a,b,c,d; // Globals
a = 5;
b = a + d;
c = b - 7;
b = 10;

Naive Code
mov   5,%l0
st    %l0,[a]
ld    [a],%l0
ld    [d],%l1
add   %l0,%l1,%l0
st    %l0,[b]
ld    [b],%l0
sub   %l0,7,%l0
st    %l0,[c]
mov   10,%l0
st    %l0,[b]

18 instructions are needed (memory
references take 2 instructions)

61CS 701  Fall 2005
©

With Register Tracking

12 instructions (rather than 18)

Instruction Generated %l0 %l1

mov 5,%l0 5(S)

! Defer assignment to a 5(S), a(U)

ld  [d], %l1 5(S), a(U) d(S)

!d unused after next inst

add %l0,%l1,%l1 5(S), a(U) b(U)

!b is dead after next inst

sub %l1,7,%l1 5(S), a(U) c(U)

! %l1 has lower cost

st  %l1, [c] 5(S), a(U)

mov 10, %l1 5(S), a(U) b(U), 10(S)

! save unsaved values

st %l0, [a] b(U), 10(S)

st %l1,[b]
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Pointers, Arrays and Reference
Parameters

When an array, reference parameter
or pointed-to variable is read, all
unsaved register values that might be
aliased must be stored.

When an array, reference parameter
or pointed-to variable is written, all
unsaved register values that might be
aliased must be stored, then cleared
from the register association list.

Thus if a[3] is in a register and a[i]
is assigned to, a[3] must be stored (if
unsaved) and removed from the
association list.
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Optimal Expression Tree
Translation—Sethi-Ullman
Algorithm

Reference: R. Sethi & J. D. Ullman,
“The generation of optimal code for
arithmetic expressions,” Journal of
the ACM, 1970.
Goal: Translate an expression tree
using the fewest possible registers.

Approach: Mark each tree node, N,
with an Estimate of the minimum
number of registers needed to
translate the tree rooted by N.

Let RN(N) denote the Register Needs
of node N.
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In a Load/Store architecture (ignoring
immediate operands):

RN(leaf) = 1

RN(Op) =
      If RN(Left) = RN(Right)
           Then RN(Left) + 1
           Else Max(RN(Left), RN(Right)
Example:

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1

65CS 701  Fall 2005
©

Key Insight of SU Algorithm
Translate subtree that needs more
registers first.
Why?
After translating one subtree, we’ll
need a register to hold its value.
If we translate the more complex
subtree first, we’ll still have enough
registers to translate the less complex
expression (without spilling register
values into memory).
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Specification of SU Algorithm

TreeCG(tree *T,  regList RL);

Operation:
• Translate expression tree T using only

registers in RL.
• RL must contain at least 2 registers.
• Result of T will be computed into

head(RL).
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Summary of SU Algorithm
if T is a node (variable or literal)
     load T into R1 = head(RL)
else  (T is a binary operator)
   Let R1 = head(RL)
   Let R2 = second(RL)
   if  RN(T.left) >= Size(RL) and
       RN(T.right) >= Size(RL)
       (A spill is unavoidable)
        TreeCG(T.left, RL)
        Store R1 into a memory temp
        TreeCG(T.right, RL)
        Load memory temp into R2
        Generate (OP R2,R1,R1)
  elsif RN(T.left) >= RN(T.right)
        TreeCG(T.left, RL)
        TreeCG(T.right, tail(RL))
        Generate (OP R1,R2,R1)
  else
        TreeCG(T.right, RL)
        TreeCG(T.left, tail(RL))
        Generate (OP R2,R1,R1)
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Example (with Spilling)

Assume only 2 Registers;
 RL = [%l0 ,%l1 ]
We Translate the left subtree first
(using 2 registers), store its result
into memory, translate the right
subtree, reload the left subtree’s
value, then do the final operation.

+3

-2

A1 B1

+2

C1 D1
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ld  [A], %l0

ld  [B], %l1

sub %l0,%l1,%l0

st  %l0, [temp]

ld  [C], %l0

ld  [D], %l1

add %l0,%l1,%l0

ld  [temp], %l1

add %l1,%l0,%l0

+3

-2

A1 B1

+2

C1 D1
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Larger Example

Assume 3 Registers;
 RL = [%l0 ,%l1 ,%l2 ]
Since right subtree is more complex,
it is translated first.

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1
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ld  [C], %l0

ld  [D], %l1

add %l0,%l1,%l0

ld  [E], %l1

ld  [F], %l2

mul %l1,%l2,%l1

add %l0,%l1,%l0

ld  [A], %l1

ld  [B], %l2

sub %l1,%l2,%l1

add %l1,%l0,%l0

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1
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Refinements & Improvements
• Register needs rules can be modified to

model various architectural features.

For example, Immediate operands, that
need not be loaded into registers, can be
modeled by the following rule:

RN(literal) = 0 if literal may be used as
                     an immediate operand

• Commutativity & Associativity of
operands may be exploited:

+3

+2

A1 B1

+2

C1 D1

+2

A1 B1 C1 D1

⇒

73CS 701  Fall 2005
©

Is Minimizing Register Use
Always Wise?

SU minimizes the number of registers
used but at the cost of reduced ILP.

Since only 2 registers are used, there
is little possibility of parallel
evaluation.

+2

+2

A1 B1

C1

D
1

+2
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When more registers are used, there is
often more potential for parallel
evaluation:

Here as many as four registers may be
used to increase parallelism.

+

+

A B

+

C D
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Optimal Translation for DAGs
is Much Harder

If variables or expression values may
be shared and reused, optimal code
generation becomes NP-Complete.

Example: a+b*(c+d)+a*(c+d)

We must decide how long to hold
each value in a register. Best
orderings may “skip” between
subexpressions

Reference:  R. Sethi, “Complete
Register Allocation Problems,” SIAM
Journal of Computing, 1975.


