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Reading Assignment
• Read Assignment #2.

• Read George and Appel’s paper, “Iterated
Register Coalescing.” (Linked from Class
Web page)

• Read Larus and Hilfinger’s paper,
“Register Allocation in the SPUR Lisp
Compiler.”
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Liveness Analysis
Just because a definition reaches a
Basic Block, b, does not mean it must
be allocated to a register at b.

We also require that the definition be
Live at b. If the definition is dead,
then it will no longer be used, and
register allocation is unnecessary.

For a Basic Block b and Variable V:
LiveIn(b) = true if V is Live (will be
used before it is redefined) at the
beginning of b.

LiveOut(b) = true if V is Live (will be
used before it is redefined) at the end
of b.

99CS 701  Fall 2005
©

LiveIn and LiveOut are computed, using
the following rules:
1. If Basic Block b has no successors then

      LiveOut(b) = false
2. For all Other Basic Blocks

       LiveOut(b) =

3. LiveIn(b) =
       If V is used before it is defined in

Basic Block b
       Then  true
       Elsif V is defined before it is
                used in Basic Block b
       Then  false
       Else    LiveOut(b)

∨
s ∈ Succ(b)

 LiveIn(s)
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Merging Live Ranges
It is possible that each Basic Block
that contains a definition of v creates
a distinct Live Range of V.
∀ Basic Blocks, b, that contain a

definition of V:

Range(b) =
{b} ∪ {k | b ∈ DefsIn(k) & LiveIn(k)}

This rule states that the Live Range of
a definition to V in Basic Block b is b
plus all other Basic Blocks that the
definition of V reaches and in which
V is live.
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If two Live Ranges overlap (have one
of more Basic Blocks in common),
they must share the same register too.
(Why?)

Therefore,

If Range(b1) ∩ Range(b2) ≠ φ
Then replace
    Range(b1) and Range(b2)
    with Range(b1) ∪ Range(b2)
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Example
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The Live Ranges we Compute are

Range(1) = {1} U {3,4} = {1,3,4}

Range(2) = {2} U {4} = {2,4}

Range(5) = {5} U {7} = {5,7}

Range(6) = {6} U {7} = {6,7}

Ranges 1 and 2 overlap, so

Range(1) = Range(2) = {1,2,3,4}

Ranges 5 and 6 overlap, so

Range(5) = Range(6) = {5,6,7}
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Interference Graph
An Interference Graph represents
interferences between Live Ranges.

Two Live Ranges interfere if they
share one or more Basic Blocks in
common.

Live Ranges that interfere must be
allocated different registers.

In an Interference Graph:
•   Nodes are Live Ranges

•   An undirected arc connects two Live
Ranges if and only if they interfere
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Example
int p(int lim1, int lim2) {
  for (i=0; i<lim1 && A[i]>0;i++){}
  for (j=0; j<lim2 && B[j]>0;j++){}
  return i+j;
}

We optimize array accesses by placing
&A[0]  and &B[0]  in temporaries:

int p(int lim1, int lim2) {
  int *T1 = &A[0];
  for (i=0; i<lim1 && *(T1+i)>0;i++){}
  int *T2 = &B[0];
  for (j=0; j<lim2 && *(T2+j)>0;j++){}
  return i+j;
}

lim1 lim2

T1 T2

i j
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Register Allocation via Graph
Coloring

We model global register allocation as
a Coloring Problem on the
Interference Graph

We wish to use the fewest possible
colors (registers) subject to the rule
that two connected nodes can’t share
the same color.
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Optimal Graph Coloring is
NP-Complete
Reference:

“Computers and Intractability,”
M. Garey and D. Johnson,
W.H. Freeman, 1979.

We’ll use a Heuristic Algorithm originally
suggested by Chaitin et. al. and improved
by Briggs et. al.
References:

“Register Allocation Via Coloring,”
G. Chaitin et. al., Computer
Languages, 1981.

“Improvement to Graph Coloring
Register Allocation,” P. Briggs et. al.,
PLDI, 1989.
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Coloring Heuristic
To R-Color a Graph (where R is the
number of registers available)
1. While any node, n, has < R neighbors:

     Remove n from the Graph.
     Push n onto a Stack.

2. If the remaining Graph is non-empty:
     Compute the Cost of each node.
     The Cost of a Node (a Live Range)

is the number of extra instructions
     needed if the Node isn’t assigned a
     register, scaled by 10loop_depth.
     Let NB(n) =
            Number of Neighbors of n.
     Remove that node n that has the
     smallest Cost(n)/NB(n) value.
     Push n onto a Stack.
     Return to Step 1.
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3. While Stack is non-empty:
     Pop n from the Stack.

   If n’s neighbors are assigned fewer
      than R colors
   Then assign n any unassigned color
   Else leave n uncolored.
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Example
  int p(int lim1, int lim2) {
  int *T1 = &A[0];
  for (i=0; i<lim1 && *(T1+i)>0;i++){}
  int *T2 = &B[0];
  for (j=0; j<lim2 && *(T2+j)>0;j++){}
  return i+j;
}

Do a 3 coloring

lim1 lim2 T1 T2 i j

Cost 11 11 11 11 42 42

Cost/
Neighbors

11/3 11/5 11/3 11/3 42/5 42/3

lim1 lim2

T1 T2

i j
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Since no node has fewer than 3
neighbors, we remove a node based
on the minimum Cost/Neighbors
value.

lim2  is chosen.
We now have:

Remove (say) lim1 , then T1, T2, j
and i  (order is arbitrary).

lim1

T1 T2

i j
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The Stack is:

Assuming the colors we have are R1,
R2 and R3, the register assignment
we choose is
i :R1, j :R2, T2:R3, T1:R2, lim1 :R3,
lim2 :spill

lim2
lim1

T1
T2
j
i

lim1 lim2

T1 T2

i j


