
97CS 701 Fall 2005
©

Reading Assignment
• Read Assignment #2.

• Read George and Appel’s paper, “Iterated
Register Coalescing.” (Linked from Class
Web page)

• Read Larus and Hilfinger’s paper,
“Register Allocation in the SPUR Lisp
Compiler.”

98CS 701 Fall 2005
©

Liveness Analysis
Just because a definition reaches a
Basic Block, b, does not mean it must
be allocated to a register at b.

We also require that the definition be
Live at b. If the definition is dead,
then it will no longer be used, and
register allocation is unnecessary.

For a Basic Block b and Variable V:
LiveIn(b) = true if V is Live (will be
used before it is redefined) at the
beginning of b.

LiveOut(b) = true if V is Live (will be
used before it is redefined) at the end
of b.

99CS 701 Fall 2005
©

LiveIn and LiveOut are computed, using
the following rules:
1. If Basic Block b has no successors then

 LiveOut(b) = false
2. For all Other Basic Blocks

 LiveOut(b) =

3. LiveIn(b) =
 If V is used before it is defined in

Basic Block b
 Then true
 Elsif V is defined before it is
 used in Basic Block b
 Then false
 Else LiveOut(b)

∨
s ∈ Succ(b)

 LiveIn(s)

100CS 701 Fall 2005
©

Merging Live Ranges
It is possible that each Basic Block
that contains a definition of v creates
a distinct Live Range of V.
∀ Basic Blocks, b, that contain a

definition of V:

Range(b) =
{b} ∪ {k | b ∈ DefsIn(k) & LiveIn(k)}

This rule states that the Live Range of
a definition to V in Basic Block b is b
plus all other Basic Blocks that the
definition of V reaches and in which
V is live.

101CS 701 Fall 2005
©

If two Live Ranges overlap (have one
of more Basic Blocks in common),
they must share the same register too.
(Why?)

Therefore,

If Range(b1) ∩ Range(b2) ≠ φ
Then replace
 Range(b1) and Range(b2)
 with Range(b1) ∪ Range(b2)

102CS 701 Fall 2005
©

Example

x←

x←

x←

x←

←x

←x

1

2 3

4

5

6

7

8

103CS 701 Fall 2005
©

x←

x←

x←

x←

←x

←x

1

2 3

4

5

6

7

8

Li=F

Li=F

Li=F

Li=F

Li=F

Li=T

Li=T

Li=T

Lo=T

Lo=T
Lo=T

Lo=T

Lo=T

Lo=F

Lo=F

Lo=F

Di={ }

Di={1} Di={1}

Di={1,2}

Di={1,2,5,6}

Di={5}

Di={5,6}

Di={5,6}

Do={1}

Do={2}

Do={1,2}

Do={5}

Do={6}

Do={5,6}

Do={5,6}

Do={1}

104CS 701 Fall 2005
©

The Live Ranges we Compute are

Range(1) = {1} U {3,4} = {1,3,4}

Range(2) = {2} U {4} = {2,4}

Range(5) = {5} U {7} = {5,7}

Range(6) = {6} U {7} = {6,7}

Ranges 1 and 2 overlap, so

Range(1) = Range(2) = {1,2,3,4}

Ranges 5 and 6 overlap, so

Range(5) = Range(6) = {5,6,7}

105CS 701 Fall 2005
©

Interference Graph
An Interference Graph represents
interferences between Live Ranges.

Two Live Ranges interfere if they
share one or more Basic Blocks in
common.

Live Ranges that interfere must be
allocated different registers.

In an Interference Graph:
• Nodes are Live Ranges

• An undirected arc connects two Live
Ranges if and only if they interfere

106CS 701 Fall 2005
©

Example
int p(int lim1, int lim2) {
 for (i=0; i<lim1 && A[i]>0;i++){}
 for (j=0; j<lim2 && B[j]>0;j++){}
 return i+j;
}

We optimize array accesses by placing
&A[0] and &B[0] in temporaries:

int p(int lim1, int lim2) {
 int *T1 = &A[0];
 for (i=0; i<lim1 && *(T1+i)>0;i++){}
 int *T2 = &B[0];
 for (j=0; j<lim2 && *(T2+j)>0;j++){}
 return i+j;
}

lim1 lim2

T1 T2

i j

107CS 701 Fall 2005
©

Register Allocation via Graph
Coloring

We model global register allocation as
a Coloring Problem on the
Interference Graph

We wish to use the fewest possible
colors (registers) subject to the rule
that two connected nodes can’t share
the same color.

108CS 701 Fall 2005
©

Optimal Graph Coloring is
NP-Complete
Reference:

“Computers and Intractability,”
M. Garey and D. Johnson,
W.H. Freeman, 1979.

We’ll use a Heuristic Algorithm originally
suggested by Chaitin et. al. and improved
by Briggs et. al.
References:

“Register Allocation Via Coloring,”
G. Chaitin et. al., Computer
Languages, 1981.

“Improvement to Graph Coloring
Register Allocation,” P. Briggs et. al.,
PLDI, 1989.

109CS 701 Fall 2005
©

Coloring Heuristic
To R-Color a Graph (where R is the
number of registers available)
1. While any node, n, has < R neighbors:

 Remove n from the Graph.
 Push n onto a Stack.

2. If the remaining Graph is non-empty:
 Compute the Cost of each node.
 The Cost of a Node (a Live Range)

is the number of extra instructions
 needed if the Node isn’t assigned a
 register, scaled by 10loop_depth.
 Let NB(n) =
 Number of Neighbors of n.
 Remove that node n that has the
 smallest Cost(n)/NB(n) value.
 Push n onto a Stack.
 Return to Step 1.

110CS 701 Fall 2005
©

3. While Stack is non-empty:
 Pop n from the Stack.

 If n’s neighbors are assigned fewer
 than R colors
 Then assign n any unassigned color
 Else leave n uncolored.

111CS 701 Fall 2005
©

Example
 int p(int lim1, int lim2) {
 int *T1 = &A[0];
 for (i=0; i<lim1 && *(T1+i)>0;i++){}
 int *T2 = &B[0];
 for (j=0; j<lim2 && *(T2+j)>0;j++){}
 return i+j;
}

Do a 3 coloring

lim1 lim2 T1 T2 i j

Cost 11 11 11 11 42 42

Cost/
Neighbors

11/3 11/5 11/3 11/3 42/5 42/3

lim1 lim2

T1 T2

i j

112CS 701 Fall 2005
©

Since no node has fewer than 3
neighbors, we remove a node based
on the minimum Cost/Neighbors
value.

lim2 is chosen.
We now have:

Remove (say) lim1 , then T1, T2, j
and i (order is arbitrary).

lim1

T1 T2

i j

113CS 701 Fall 2005
©

The Stack is:

Assuming the colors we have are R1,
R2 and R3, the register assignment
we choose is
i :R1, j :R2, T2:R3, T1:R2, lim1 :R3,
lim2 :spill

lim2
lim1

T1
T2
j
i

lim1 lim2

T1 T2

i j

