
114CS 701 Fall 2005
©

Color Preferences
Sometimes we wish to assign a
particular register (color) to a
selected Live Range (e.g., a parameter
or return value) if possible.

We can mark a node in the
Interference Graph with a Color
Preference.

When we unstack nodes and assign
colors, we will avoid choosing color c
if an uncolored neighbor has indicted
a preference for it. If only color c is
left, we take it (and ignore the
preference).

115CS 701 Fall 2005
©

Example
Assume in our previous example that
lim1 has requested register R1 and
lim2 has requested register R2
(because these are the registers the
parameters are passed in).

116CS 701 Fall 2005
©

Now when i , j and T1 are unstacked,
they respect lim1 ’s and lim2 ’s
preferences:
i :R3, j :R1, T2:R2, T1:R2, lim1 :R1,
lim2 :spill

lim1(R1) lim2(R2)

T1 T2

i j

lim2
lim1

T1
T2
j
i

117CS 701 Fall 2005
©

Using Coloring to Optimize
Register Moves

A nice “fringe benefit” of allocating
registers via coloring is that we can
often optimize away register to
register moves by giving the source
and target the same color.
Consider

We’d like x , t1 and q to get the same
color. How do we “force” this?

a b

x t1

y q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q

118CS 701 Fall 2005
©

We can “merge” x , t1 and q together:

Now a 2-coloring that optimizes
away both register to register moves
is trivial.

a b

y x,t1,q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q

119CS 701 Fall 2005
©

Reckless Coalescing
Originally, Chaitin suggested merging
all move-related nodes that don’t
interfere.

This is reckless—the merged node may
not be colorable!

(Is it worth a spill to save a move??)

This Graph is 2-colorable before the
reckless merge, but not after.

e fc

a

b

d

120CS 701 Fall 2005
©

Conservative Coalescing
In response to Chaitin’s reckless
coalescing approach, Briggs suggested
a more conservative approach.

See “Improvement to Graph Coloring
Register Allocation,” P. Briggs et. al.,
ACM Toplas, May 1994.

121CS 701 Fall 2005
©

Briggs suggested that two move-
related nodes should be merged only
if the combined source and target
node has fewer than R neighbors.

This guarantees that the combined
node will be colorable, but may miss
some optimization opportunities.

After a merge of nodes a and d, there
will be four neighbors, but a
2-coloring is still possible.

e fc

a

b

d

122CS 701 Fall 2005
©

Iterated Coalescing
This is an intermediate approach, that
seeks to be safer than reckless
coalescing and more effective than
conservative coalescing. It was
proposed by George and Appel.

123CS 701 Fall 2005
©

1. Build:
Create an Interference Graph, as
usual. Mark source-target pairs with
a special move-related arc (denoted
as a dashed line).

2. Simplify:
Remove and stack non-move-related
nodes with < R neighbors.

3. Coalesce:
Combine move-related pairs that will
have < R neighbors after coalescing.

Repeat steps 2 and 3 until only nodes
with R or more neighbors or move-
related nodes remain or the graph is
empty.

124CS 701 Fall 2005
©

4. Freeze:
If the Interference Graph is
 non-empty:
Then If there exists a move-related

 node with < R neighbors
 Then: “Freeze in” the move and
 make the node
 non-move-related.
 Return to Steps 2 and 3.
 Else: Use Chaitin’s
 Cost/Neighbors criterion
 to remove and stack
 a node.
 Return to Steps 2 and 3.

5. Unstack:
Color nodes as they are unstacked as
per Chaitin and Briggs.

125CS 701 Fall 2005
©

Example

Assume we want a 4-coloring.
Note that neither j&b nor d&c can be
conservatively colored.

Live in: k,j

g = mem[j+12]

h = k-1

f = g*h

e = mem[j+8]

m = mem[j+16]

b = mem[f]

c = e+8

d = c

k = m+4

j = b

goto d

Live out: d,k,j

f

e

mj k b

d c

h g

126CS 701 Fall 2005
©

We simplify by removing nodes with
fewer than 4 neighbors.
We remove and stack: g, h, k , f , e, m

f

e

mj k b

d c

h g

127CS 701 Fall 2005
©

The remaining Interference Graph is

We can now conservatively coalesce
the move-related pairs to obtain

These remaining nodes can now be
removed and stacked.

j b

d c

j&b d&c

128CS 701 Fall 2005
©

We can now unstack and color:
d&c:R1, j&b :R2, m:R3, e:R4, f :R1,
k:R3, h:R1, g:R4

No spills were required and both
moves were optimized away.

d&c
j&b

m
e
f
k
g
h

129CS 701 Fall 2005
©

Reading Assignment
• Read David Wall’s paper, “Global Register

Allocation at Link Time.”

130CS 701 Fall 2005
©

Priority-Based Register
Allocation

Alternatives to Chaitin-style register
allocation are presented in:

• Hennessy and Chow, “The priority-
based coloring approach to register
allocation,” ACM TOPLAS, October
1990.

• Larus and Hilfinger, “Register
allocation in the SPUR Lisp compiler,”
SIGPLAN symposium on Compiler
Construction, 1986.

131CS 701 Fall 2005
©

These papers suggest two innovations:
1. Use of a Priority Value to choose nodes

to color in an Interference Graph.
A Priority measures
 (Spill cost)/(Size of Live Range)
The idea is that small live ranges with
a high spill cost are ideal candidates
for register allocation.
As the size of a live range grows, it
becomes less attractive for register
allocation (since it “ties up” a register
for a larger portion of a program).

2. Live Range Splitting
Rather than spill an entire live range
that can’t be colored, the live range is
split into two or more smaller live
ranges that may be colorable.

132CS 701 Fall 2005
©

Large vs. Small Live Ranges
• A large live range has less spill code.

Values are directly read from and written
to a register.
But, a large live range is harder to
allocate, since it may conflict with many
other register candidates.

• A small live range is easier to allocate
since it competes with fewer register
candidates.
But, more spill code is needed to load
and save register values across live
ranges.

• In the limit a live range can shrink to a
single definition or use of a register.
But, then we really don’t have an
effective register allocation at all!

133CS 701 Fall 2005
©

Terminology
In an Interference Graph:
• A node with fewer neighbors than colors

is termed unconstrained. It is trivial to
color.

• A node that is not unconstrained is
termed constrained. It may need to be
split or spilled.

