
134CS 701  Fall 2005
©

PriorityRegAlloc(proc, regCount) {
    ig ← buildInterferenceGraph(proc)
   unconstrained ←

{ n ∈ nodes(ig)  neighborCount(n) < regCount }
   constrained ←

{ n ∈ nodes(ig)  neighborCount(n) ≥ regCount }

 while( constrained ≠ φ ) {
for ( c ∈ constrained such that not colorable(c)

and canSplit(c) ) {
c1, c2 ← split(c)
constrained ← constrained - {c}
if ( neighborCount(c1) < regCount )

unconstrained ← unconstrained U { c1}

else constrained ← constrained U {c1}
    if ( neighborCount(c2) < regCount )

unconstrained ← unconstrained U { c2}

else constrained ← constrained U {c2}
for ( d ∈ neighbors(c) such that

                     d ∈ unconstrained and
                       neighborCount(d) ≥ regCount ){
                        unconstrained ← unconstrained - {d}

constrained ← constrained U {d}
        }      } // End of both for loops



135CS 701  Fall 2005
©

/* At this point all nodes in constrained are
           colorable or can’t be split */

      Select p ∈ constrained such that
                     priority(p) is maximized
      if ( colorable(p) )

                color(p)
       else  spill(p)
  } // End of While
 color all nodes ∈ unconstrained
}



136CS 701  Fall 2005
©

How to Split a Constrained
Node
• There are many possible partitions of a

live range; too many to fully explore.

• Heuristics are used instead. One simple
heuristic is:

1. Remove the first basic block
   (or instruction) of the live range.

Put it into a new live range, NR.
2. Move successor blocks
   (or instructions) from the original
   live range into NR, as long as NR
   remains colorable.
3. Single Basic Blocks
    (or instructions) that can’t be
    colored are spilled.



137CS 701  Fall 2005
©

Example
int sum(int a[], int b[]) {
  int sum = 0;
  for (int i=0; i<1000; i++)
     sum += a[i];
  for (int j=0; j<1000; j++)
     sum += b[j];
  return sum;
}

Assume we want a 3-coloring.

a b

sum

i j



138CS 701  Fall 2005
©

We first simplify the graph by
removing unconstrained nodes (those
with < 3 neighbors).
Node j  is removed. We now have:

At this point, each node has 3
neighbors, so either spilling or
splitting is necessary.
A spill really isn’t attractive as each
of the 4 register candidates is used
within a loop, magnifying the costs of
accessing memory.

a b

sum

i



139CS 701  Fall 2005
©

Coloring by Priorities
We’ll color constrained nodes by
priority values, with preference given
to large priority values.



140CS 701  Fall 2005
©

a b sum i

Cost 11 11 42 41

Cost/Size 11/3 11/6 42/7 41/3

i < 1000

1

2 3

4

a = parm1
b = parm2
sum = 0
i = 0

sum += a[i]
i++

j = 0

j < 1000
5 6

7

sum += b[j]
j++

return sum



141CS 701  Fall 2005
©

Variables i , sum and a are assigned
colors R1, R2 and R3.
Variable b can’t be colored, so we will
try to split it. b’s live range is blocks 1
to 6, with 1 as b’s entry point.
Blocks 1 to 3 can’t be colored, so b is
spilled in block 1. However, blocks 4
to 6 form a split live range that can
be colored (using R3).
We will reload b into R3 in block 4,
and it will be register-allocated
throughout the second loop. The
added cost due to the split is minor—
a store in block 1 and a reload in
block 4.



142CS 701  Fall 2005
©

Choice of Spill Heuristics
We have seen a number of heuristics
used to choose the live ranges to be
spilled (or colored).
These heuristics are typically chosen
using one’s intuition of what register
candidates are most (or least)
important. Then a heuristic is tested
and “fine tuned” using a variety of
test programs.
Recently, researchers have suggested
using machine learning techniques to
automatically determine effective
heuristics.
In “Meta Optimization: Improving
Compiler Heuristics with Machine
Learning,” Stephenson, Amarasinghe,
et al, suggest using genetic
programming techniques in which



143CS 701  Fall 2005
©

priority functions (like choice of spill
candidates) are mutated and allowed
to “evolve.”
Although the approach seems rather
random and unfocused, it can be
effective. Priority functions better
than those used in real compilers have
been reported, with research still
ongoing.



144CS 701  Fall 2005
©

Interprocedural Register
Allocation

The goal of register allocation is to
keep frequently used values in
registers.

Ideally, we’d like to go to memory
only to access values that may be
aliased or pointed to.

For example, array elements and heap
objects are routinely loaded from and
stored to memory each time they are
accessed.



145CS 701  Fall 2005
©

With alias analysis, optimizations like
Scalarization are possible.

for (i=0; i<1000; i++)
     for (j=0; j<1000; j++)
        a[i] += i * b[j];

is optimized to

for (i=0; i<1000; i++){
     int Ai = a[i];
     for (j=0; j<1000; j++)
        Ai += i * b[j];
     a[i] = Ai;
}



146CS 701  Fall 2005
©

Attacking Call Overhead
• Even with good global register allocation

calls are still a problem.

• In general, the caller and callee may use
the same registers, requiring saves and
restores across calls.

• Register windows help, but they are
inflexible, forcing all subprograms to use
the same number of registers.

• We’d prefer a register allocator that is
sensitive to the calling structure of a
program.



147CS 701  Fall 2005
©

Reading Assignment
• Read “Minimum Cost Interprocedural

Register Allocation,” by S. Kurlander et
al. (linked from class Web page).



148CS 701  Fall 2005
©

Call Graphs
A Call Graph represents the calling
structure of a program.

• Nodes are subprograms (procedures and
functions).

• Arcs represent calls between
subprograms. An arc from A to B denotes
that a call to B appears within A.

• For an indirect call (a function
parameter or a function pointer) an arc
is added to all potential callees.



149CS 701  Fall 2005
©

Example

main() {
  if (pred(a,b))
       subr1(a)
  else subr2(b);}

bool pred(int a, int b){
   return a==b; }

subr1(int a){ print(a);}

subr2(int x){ print(2*x);}

main

pred subr1 subr2

print



150CS 701  Fall 2005
©

Wall’s Interprocedural
Register Allocator
Operates in two phases:
1. Register candidates are identified at

the subprogram level.
Each candidate (a single variable or a
set of non-interfering live ranges) is
compiled as if it won’t get a register.
At link-time unnecessary loads and
stores are edited away if the
candidate is allocated a register.

2. At link-time, when all subprograms
are known and available, register
candidates are allocated registers.



151CS 701  Fall 2005
©

Identifying Interprocedural
Register Sharing

If two subprograms are not connected
in the call graph, a register candidate
in each can share the same register
without any saving or restoring across
calls.

A register candidate from pred ,
subr1  and subr2  can all share one
register.

main

pred subr1 subr2

print



152CS 701  Fall 2005
©

At the interprocedural level we must
answer 2 questions:
1. A local candidate of one subprogram

can share a register with candidates
of what other subprograms?

2. Which local register candidates will
yield the greatest benefit if given a
register?

Wall designed his allocator for a machine
with 52 registers. This is enough to
divide all the registers among the
subprograms without any saves or
restores at call sites.
With fewer registers, spills, saves and
restores will often be needed (if registers
are used aggressively within a
subprogram).



153CS 701  Fall 2005
©

Restrictions on the Call
Graph

Wall limited calls graphs to DAGs
since cycles in a call graph imply
recursion, which will force saves and
restores (why?)

Cost Computations
Each register candidate is given a
per-call cost, based on the number of
saves and restores that can be
removed, scaled by 10loop_depth.
This benefit is then multiplied by the
expected number of calls, obtained by
summing the total number of call
sites, scaled by loop nesting depth.



154CS 701  Fall 2005
©

Grouping Register Candidates
We now have an estimate of the
benefit of allocating a register to a
candidate. Call this estimate

 cost(candidate)
We estimate potential interprocedural
sharing of register candidates by
assigning each candidate to a Group.
All candidates within a group can
share a register. No two candidates in
any subprogram are in the same
group.



155CS 701  Fall 2005
©

Groups are assigned during a reverse
depth-first traversal of the call graph.
 AsgGroup(node n) {
    if (n is a leaf node)
        grp = 0
    else { for (each c ∈ children(n)) {
                AsgGroup(c) }
        grp =
             1+ Max (Max group used in c)

 c ∈ children(n)

}

    for (each r ∈ registerCandidates(n)){
          assign r to grp
          grp++  }
 }
Global variables are assigned to a
singleton group.



156CS 701  Fall 2005
©

Example

At Print: grp(i)=0, grp(j)=1
At subr1: Max grp used in print is 1

grp(x)=2, grp(y)=3
At subr2: Max grp used in print is 1

grp(t)=2
At main: Max grp used in children is 3

grp(a)=4, grp(b)=5, grp(c)=6

main
Cand: a, b, c

subr1
Cand: x, y

subr2
Cand: t

Print
Cand: i, j



157CS 701  Fall 2005
©

If A calls B (directly or indirectly),
then none of A’s register candidates
are in the same group as any of B’s
register candidates.

This guarantees that A and B will use
different registers.

Thus no saves or restores are needed
across a call from A to B.


