
154CS 701 Fall 2005
©

Grouping Register Candidates
We now have an estimate of the
benefit of allocating a register to a
candidate. Call this estimate

 cost(candidate)
We estimate potential interprocedural
sharing of register candidates by
assigning each candidate to a Group.
All candidates within a group can
share a register. No two candidates in
any subprogram are in the same
group.

155CS 701 Fall 2005
©

Groups are assigned during a reverse
depth-first traversal of the call graph.
 AsgGroup(node n) {
 if (n is a leaf node)
 grp = 0
 else { for (each c ∈ children(n)) {
 AsgGroup(c) }
 grp =
 1+ Max (Max group used in c)

 c ∈ children(n)

}

 for (each r ∈ registerCandidates(n)){
 assign r to grp
 grp++ }
 }
Global variables are assigned to a
singleton group.

156CS 701 Fall 2005
©

Example

At Print: grp(i)=0, grp(j)=1
At subr1: Max grp used in print is 1

grp(x)=2, grp(y)=3
At subr2: Max grp used in print is 1

grp(t)=2
At main: Max grp used in children is 3

grp(a)=4, grp(b)=5, grp(c)=6

main
Cand: a, b, c

subr1
Cand: x, y

subr2
Cand: t

Print
Cand: i, j

157CS 701 Fall 2005
©

If A calls B (directly or indirectly),
then none of A’s register candidates
are in the same group as any of B’s
register candidates.

This guarantees that A and B will use
different registers.

Thus no saves or restores are needed
across a call from A to B.

158CS 701 Fall 2005
©

Assigning Registers to Groups

 Cost(group) = Σ cost(candidates)
candidates ∈group

We assign registers to groups based
on the cost of each group, using an
“auction.”

for (r=0; r < RegisterCount; r++) {
 Let G be the group with the
 greatest cost that has not yet
 been assigned a register.
 Assign r to G
}

159CS 701 Fall 2005
©

Example (3 Registers)

Group Members Cost
0 i 40
1 j 5
2 x, t 15
3 y 15
4 a 20
5 b 10
6 c 30

main
Cand: a:20, b:10, c:30

subr1
Cand: x:5, y:15

subr2
Cand: t:10

Print
Cand: i:40, j:5

160CS 701 Fall 2005
©

The 3 registers are given to the
groups with the highest weight,
i (40), c(30), a(20).
Is this optimal?
No! If y and t are grouped together, y
and t (cost=25) get the last register.

main
Cand: a:20, b:10, c:30

subr1
Cand: x:5, y:15

subr2
Cand: t:10

Print
Cand: i:40, j:5

161CS 701 Fall 2005
©

Recursion
To handle recursion, any call to a
subprogram “up” in the call graph
must save and restore all registers
possibly in use between the caller and
callee.

A call fromEtoB saves r3 to r5.

A:r1,r2

B:r3

C:r4 D:r4

E:r5

162CS 701 Fall 2005
©

Performance
Wall found interprocedural register
allocation to be very effective (given
52 Registers!).

Speedups of 10-28% were reported.
Even with only 8 registers, speedups
of 5-20% were observed.

163CS 701 Fall 2005
©

Optimal Interprocedural
Register Allocation

Wall’s approach to interprocedural
register allocation isn’t optimal
because register candidates aren’t
grouped to achieve maximum benefit.

Moreover, the placement of save and
restore code if needed isn’t
considered.

These limitations are addressed by
Kurlander in “Minimum Cost
Interprocedural Register Allocation.”

164CS 701 Fall 2005
©

Optimal Save-Free
Interprocedural Register
Allocation
• Allocation is done on a cycle-free call

graph.

• Each subprogram has one or more
register candidates, ci.

• Each register candidate, ci, has a cost (or
benefit), wi, that is the improvement in
performance if ci is given a register. (This
wi value is scaled to include nested loops
and expected call frequencies.)

165CS 701 Fall 2005
©

Interference Between Register
Candidates
The notion of interference is extended to
include interprocedural register
candidates:
• Two Candidates in the same subprogram

always interfere.
(Local non-interfering variables and
values have already been grouped into
interprocedural register candidates.)

• If subprogram P calls subprogram Q
(directly or indirectly) then register
candidates within P always interfere
with register candidates within Q.

166CS 701 Fall 2005
©

Example

The algorithm can group candidate p
with either t or u (since they don’t
interfere). It can also group candidate
q with either t or u.

If two registers are available, it must
“discover” that assigning R1 to q&t,
and R2 to m is optimal.

V
Cand: m:6

W
Cand: p:3, q:4

X
Cand: t:5, u:1

167CS 701 Fall 2005
©

Non-interfering register candidates are
grouped into registers so as to solve:

That is, we wish to group sets of non-
interfering register candidates into k
registers such that the overall benefit is
maximized.
But how do we solve this?
Certainly examining all possible
groupings will be prohibitively expensive!

Maximize Σ wj

cj ∈ U Ri

k

i=1

168CS 701 Fall 2005
©

Kurlander solved this problem by
mapping it to a known problem in
Integer Programming:
the Dual Network Flow Problem.

Solution techniques for this problem are
well known—libraries of standard
solution algorithms exist.

Moreover, this problem can be solved in
polynomial time.

That is, it is “easier” than optimal global
(intraprocedural) register allocation,
which is NP-complete!

169CS 701 Fall 2005
©

Reading Assignment
• Read Section 15.4 (Code Scheduling) of

Chapter 15.

• Read Gibbon’s and Muchnick’s paper,
“Efficient Instruction Scheduling for a
Pipelined Architecture.”

• Read Kerns and Eggers’ paper,
“Balanced Scheduling: Instruction
Scheduling When Memory Latency is
Uncertain.” (Linked from the class Web
page.)

170CS 701 Fall 2005
©

Adding Saves & Restores
Wall designed his save-free
interprocedural allocator for a
machine with 52 registers.

Most computers have far fewer
registers, and hence saving and
restoring across calls, when profitable,
should be allowed.

Kurlander’s Technique can be
extended to include save/restore
costs. If the cost of saving and
restoring is less than the benefit of
allocating an extra register, saving is
done. Moreover, saving is done where
it is cheapest (not closest!).

171CS 701 Fall 2005
©

Example
main() { ... p(); ...}

p(){ ...
 for (i=0; i<1000000; i++){
 q():
 }
}

We first allocate registers in a save-
free mode. After all Registers have
been allocated, q may need additional
registers.
Most allocators would add save/
restore code at q’s call site (or q’s
prologue and epilogue).
An optimal allocator will place save/
restore code at p’s call site, freeing a
register that p doesn’t even want (but
that q does want!)

172CS 701 Fall 2005
©

Extending the Cost Model
• As before, we group register candidates

of different subprograms into registers.

• Now only candidates within the same
subprogram automatically interfere.

• Saves are placed on the edges of the call
graph.

• We aim to solve

where sm is the per/register save/
restore cost and Savedm is the number
of registers saved on edge em.

Maximize Σ wj

cj ∈ U Ri

k
sm

em∈
Σ- *Savedm

Edges
i=1

173CS 701 Fall 2005
©

• As registers are saved, they may be
reused in child subprograms.

• This optimization problem can be
solved as a Network Dual Flow
Problem.

• Again, the solution algorithm is
polynomial.

174CS 701 Fall 2005
©

Example (One Register)

P1 gets R1 save-free for m.
A save on P1→P4 costs 1 and gives a
register to n (net profit =2), so we do it.
A save on P1→P2 for z costs 2, and yields 1,
which isn’t profitable.
A save on P2→P3 for q costs 4, and yields
3, which isn’t profitable.
A save on P1→P2 for q costs 2, and yields
3, which is a net gain.

P1

Cand: m:7

Cand: z:1

P4
Cand: n:3

P3

Cand: q:3

s=2 s=1

s=4

P2

175CS 701 Fall 2005
©

Handling Global Variables
• Wall’s technique handled globals by

assuming they interfere with all
subprograms and all other globals.

• Kurlander’s approach is incremental (and
non-optimal):

First, an optimal allocation for r
registers is computed.
Next, one register is “stolen” and
assigned interprocedurally to the
most beneficial global.
(Subprograms that don’t use the
global can save and restore it locally,
allowing local reuse).
An optimal allocation using R-1
registers is computed. If this solution
plus the shared global is more
profitable than the R register

176CS 701 Fall 2005
©

solution, the global allocation is
“locked in.”
Next, another register is “stolen” for a
global, leaving R-2 for
interprocedural allocation.
This process continues until stealing
another register for a global isn’t
profitable.

177CS 701 Fall 2005
©

Why is Optimal
Interprocedural Register
Allocation Easier than Optimal
IntraProcedural Allocation?
This result seems counter-intuitive. How
can allocating a whole program be easier
(computationally) than allocating only
one subprogram.
Two observations provide the answer:
• Interprocedural allocation assumes some

form of local allocation has occurred (to
identify register candidates).

• Interprocedural interference is transitive
(if A interferes with B and B interferes
with C then A interferes with B). But
intraprocedural interference isn’t
transitive!

