
178CS 701 Fall 2005
©

Code Scheduling
Modern processors are pipelined.
They give the impression that all
instructions take unit time by
executing instructions in stages
(steps), as if on an assembly line.
Certain instructions though (loads,
floating point divides and square
roots, delayed branches) take more
than one cycle to execute.
These instructions may stall (halt the
processor) or require a nop (null
operation) to execute properly.
A Code Scheduling phase may be
needed in a compiler to avoid stalls or
eliminate nops.

179CS 701 Fall 2005
©

Scheduling Expression DAGs
After generating code for a DAG or
basic block, we may wish to schedule
(reorder) instructions to reduce or
eliminate stalls.

A Postpass Scheduler is run after code
selection and register allocation.

Postpass schedulers are very general
and flexible, since they can be used
with code generated by any compiler
with any degree of optimization

But, since they can’t modify register
allocations, they can’t always avoid
stalls.

180CS 701 Fall 2005
©

Dependency DAGs
Obviously, not all reorderings of
generated instructions are acceptable.

Computation of a register value must
precede all uses of that value.
A store of a value must precede all
loads that might read that value.

A Dependency Dag reflects essential
ordering constraints among instructions:
• Nodes are Instructions to be scheduled.

• An arc from Instruction i to Instruction j
indicates that i must be executed before
j may be executed.

181CS 701 Fall 2005
©

Kinds of Dependencies
We can identify several kinds of
dependencies:
• True Dependence:

An operation that uses a value has a
true dependence (also called a flow
dependence) upon an earlier
operation that computes the value.
For example:

mov 1, %l2

add %l2, 1, %l2

• Anti Dependence:
An operation that writes a value has a
anti dependence upon an earlier
operation that reads the value. For
example:

add %l2, 1, %l0
mov 1, %l2

182CS 701 Fall 2005
©

• Output Dependence:
An operation that writes a value has a
output dependence upon an earlier
operation that writes the value. For
example:

mov 1, %l2

mov 2, %l2

Collectively, true, anti and output
dependencies are called data
dependencies. Data dependencies
constrain the order in which
instructions may be executed.

183CS 701 Fall 2005
©

Example
Consider the code that might be
generated for
a = ((a+b) + (c*d)) + ((c+d) * d);

We’ll assume 4 registers, the
minimum possible, and we’ll reuse
already loaded values.
Assume a 1 cycle stall between a load
and use of the loaded value and a 2
cycle stall between a multiplication
and first use of the product.

184CS 701 Fall 2005
©

1. ld [a], %r1
2. ld [b], %r2
3. add %r1,%r2,%r1
4. ld [c], %r2
5. ld [d], %r3
6. smul %r2,%r3,%r4
7. add %r1,%r4,%r1
8. add %r2,%r3,%r2
9. smul %r2,%r3,%r2
10. add %r1,%r2,%r1
11. st %r1,[a]

Stall

Stall
Stall*2

Stall*2

(6 Stalls Total)

1 2

3 4

5

6

7

8 9

10

11

185CS 701 Fall 2005
©

Scheduling Requires
Topological Traversal

Any valid code schedule is a
Topological Sort of the dependency
dag.

To create a code schedule you
(1) Pick any root of the Dag.
(2) Remove it from the Dag and

schedule it.
(3) Iterate!

Choosing a Minimum Delay schedule
is NP-Complete:
 “Computers and Intractability,”
M. Garey and D. Johnson,
W.H. Freeman, 1979.

