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Code Scheduling
Modern processors are pipelined.
They give the impression that all
instructions take unit time by
executing instructions in stages
(steps), as if on an assembly line.
Certain instructions though (loads,
floating point divides and square
roots, delayed branches) take more
than one cycle to execute.
These instructions may stall (halt the
processor) or require a nop (null
operation) to execute properly.
A Code Scheduling phase may be
needed in a compiler to avoid stalls or
eliminate nops.
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Scheduling Expression DAGs
After generating code for a DAG or
basic block, we may wish to schedule
(reorder) instructions to reduce or
eliminate stalls.

A Postpass Scheduler is run after code
selection and register allocation.

Postpass schedulers are very general
and flexible, since they can be used
with code generated by any compiler
with any degree of optimization

But, since they can’t modify register
allocations, they can’t always avoid
stalls.
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Dependency DAGs
Obviously, not all reorderings of
generated instructions are acceptable.

Computation of a register value must
precede all uses of that value.
A store of a value must precede all
loads that might read that value.

A Dependency Dag reflects essential
ordering constraints among instructions:
• Nodes are Instructions to be scheduled.

• An arc from Instruction i to Instruction j
indicates that i must be executed before
j may be executed.
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Kinds of Dependencies
We can identify several kinds of
dependencies:
• True Dependence:

An operation that uses a value has a
true dependence (also called a flow
dependence) upon an earlier
operation that computes the value.
For example:

mov  1, %l2

add  %l2, 1, %l2

• Anti Dependence:
An operation that writes a value has a
anti dependence upon an earlier
operation that reads the value. For
example:

add  %l2, 1, %l0
mov  1, %l2
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• Output Dependence:
An operation that writes a value has a
output dependence upon an earlier
operation that writes the value. For
example:

mov  1, %l2

mov  2, %l2

Collectively, true, anti and output
dependencies are called data
dependencies. Data dependencies
constrain the order in which
instructions may be executed.
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Example
Consider the code that might be
generated for
a = ((a+b) + (c*d)) + ((c+d) * d);

We’ll assume 4 registers, the
minimum possible, and we’ll reuse
already loaded values.
Assume a 1 cycle stall between a load
and use of the loaded value and a 2
cycle stall between a multiplication
and first use of the product.
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1. ld   [a], %r1
2. ld   [b], %r2
3. add  %r1,%r2,%r1
4. ld   [c], %r2
5. ld   [d], %r3
6.  smul %r2,%r3,%r4
7. add  %r1,%r4,%r1
8. add  %r2,%r3,%r2
9. smul %r2,%r3,%r2
10. add  %r1,%r2,%r1
11. st   %r1,[a]

Stall

Stall
Stall*2

Stall*2

(6 Stalls Total)
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Scheduling Requires
Topological Traversal

Any valid code schedule is a
Topological Sort of the dependency
dag.

To create a code schedule you
(1) Pick any root of the Dag.
(2) Remove it from the Dag and

schedule it.
(3) Iterate!

Choosing a Minimum Delay schedule
is NP-Complete:
 “Computers and Intractability,”
M. Garey and D. Johnson,
W.H. Freeman, 1979.
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Dynamically Scheduled
(Out of Order) Processors

To avoid stalls, some processors can
execute instructions Out of Program
Order.
If an instruction can’t execute
because a previous instruction it
depends upon hasn’t completed yet,
the instruction can be “held” and a
successor instruction executed
instead.
When needed predecessors have
completed, the held instruction is
released for execution.
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Example
1. ld   [a], %r1
2. ld   [b], %r2

3. add  %r1,%r2,%r1
4. ld   [c], %r2

7. add  %r1,%r4,%r1

8. add  %r2,%r3,%r2
9. smul %r2,%r3,%r2

10. add  %r1,%r2,%r1
11. st   %r1,[a]

Stall

Stall

(2 Stalls Total)

5. ld   [d], %r3

6.  smul %r2,%r3,%r4
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Limitations of Dynamic
Scheduling
1. Extra processor complexity.
2. Register renaming (to avoid False

Dependencies) may be needed.
3. Identifying instructions to be delayed

  takes time.
4. Instructions “late” in the program

can’t be started earlier.
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Reading Assignment
• Read Goodman and Hsu’s paper, “Code

Scheduling and Register Allocation in
Large Basic Blocks.”

• Read Bernstein and Rodeh’s paper,
“Global Instruction Scheduling for
Superscalar Machines.”
(Linked from the class Web page.)
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Gibbons & Muchnick Postpass
Code Scheduler
1. If there is only one root, schedule it.
2. If there is more than one root,

  choose that root that won’t be
stalled by instructions already
scheduled.

3. If more than one root can be
scheduled without stalling,

  consider the following rules
  (in order);
  (a) Does this root stall any of its

successors?
(If so, schedule it immediately.)

(b) How many new roots are exposed
if this node is scheduled?
(More is better.)

191CS 701  Fall 2005
©

(c) Which root has the longest
weighted path to a leaf (using
instruction delays as the weight).
(The “critical path” in the DAG
gets priority.)
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Example
1. ld [a],  %r1 //Longest path
2. ld   [b], %r2

3. add  %r1,%r2,%r1
4. ld   [c], %r2

7. add  %r1,%r4,%r1

8. add  %r2,%r3,%r2
9. smul %r2,%r3,%r2

10. add  %r1,%r2,%r1
11. st   %r1,[a] (2 Stalls Total)

5. ld   [d], %r3

6. smul  %r2,%r3,%r4

//Exposes a root
//Not delayed

//Only choice

//Only choice

//Stalls succ.

//Not delayed
//Not delayed

//Only choice

//Only choice
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False Dependencies
We still have delays in the schedule
that was produced because of “false
dependencies.”
Both b and c are loaded into %r2.
This limits the ability to move the
load of c prior to any use of %r2 that
uses b.
To improve our schedule we can use a
processor that renames registers or
allocate additional registers to
remove false dependencies.
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Register Renaming
Many out of order processors
automatically rename distinct uses of
the same architectural register to
distinct internal registers.

Thus
  ld [a],%r1
  ld [b],%r2
  add %r1,%r2,%r1
  ld [c],%r2

is executed as if it were
  ld [a],%r1
  ld [b],%r2
  add %r1,%r2,%r3
  ld [c],%r4

Now the final load can be executed
prior to the add, eliminating a stall.
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Compiler Renaming
A compiler can also use the idea of
renaming to avoid unnecessary stalls.
An extra register may be needed (as
was the case for scheduling
expression trees).
Also, a round-robin allocation policy
is needed. Registers are reused in a
cyclic fashion, so that the most
recently freed register is reused last,
not first.
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Example
1. ld   [a], %r1
2. ld   [b], %r2
3. add  %r1,%r2,%r1
4. ld   [c], %r3
5. ld   [d], %r4
6.  smul %r3,%r4,%r5
7. add  %r1,%r5,%r2
8. add  %r3,%r4,%r3
9. smul %r3,%r4,%r3
10. add  %r2,%r3,%r2
11. st   %r2,[a]

Stall

Stall
Stall*2

Stall*2

(6 Stalls Total)
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After Scheduling:
4. ld [c],  %r3 //Longest path
5. ld   [d], %r4

2. ld   [b], %r2

7. add  %r1,%r5,%r2

8. add  %r3,%r4,%r3
9. smul %r3,%r4,%r3

10. add  %r2,%r3,%r2
11. st   %r2,[a] (0 Stalls Total)

1. ld   [a], %r1

6.  smul %r3,%r4,%r5

//Exposes a root
//Stalls succ.

//Stalls succ.

//Stalls succ .

//Only choice

//Only choice

//Exposes a root

//Longest path

3. add  %r1,%r2,%r1 //Only choice
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Balanced Scheduling
When scheduling a load, we normally
anticipate the best case, a hit in the
primary cache.
On older architectures this makes
sense, since we stall execution on a
cache miss.
Many newer architectures are non-
blocking. This means we can continue
execution after a miss until the
loaded value is used.
Assume a Cache miss takes N cycles
(N is typically 10 or more).
Do we schedule a load anticipating a
1 cycle delay (a hit) or an N cycle
delay (a miss)?
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Neither Optimistic Scheduling (expect a
hit) nor Pessimistic Scheduling (expect a
miss) is always better.
Consider

An Optimistic Schedule is

A Pessimistic Schedule is

load

Inst1

Inst2

Inst3

Inst4

load
Inst2
Inst1
Inst3
Inst4

Fine for a hit;
inferior for a miss.

load
Inst2
Inst3
Inst1
Inst4

Fine for a hit;
better for a miss.
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But things become more complex with
multiple loads

An Optimistic Schedule is

A Pessimistic Schedule is

load1

load2

Inst1

Inst2

Inst3

load1
Inst1
load2
Inst2
Inst3

Better for hits;
same for misses.

load1
Inst1
Inst2
load2
Inst3

Worse for hits;
same for misses.
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Balance Placement of Loads
Eggers suggests a balanced scheduler
that spaces out loads, using available
independent instructions as “filler.”
The insight is that scheduling should
not be driven by worst-case latencies
but rather by available Independent
Instructions.
For

it produces

load

Inst1

Inst2

Inst3

Inst4

load
Inst2
Inst3
Inst1
Inst4

Good; maximum
distance between
load and Inst1 in
case of a miss.
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For

balanced scheduling produces

load1

load2

Inst1

Inst2

Inst3

load1
Inst1
load2
Inst2
Inst3

Good for hits;
as good as
possible for misses.
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Idea of the Algorithm
Look at each Instruction, i, in the
Dependency DAG.
Determine which loads can run in
parallel with i and use all (or part) of
i’s execution time to cover the latency
of these loads.
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Compute available latency of each load:
 Give each load instruction an initial

latency of 1.
 For (each instruction i in the
  Dependency DAG) do:
     Consider Instructions Independent

of i:
         Gind = DepDAG -
           (AllPred(i) U AllSucc(i) U {i})
        For (each connected subgraph c
             in Gind) do:

            Find m = maximum number of
                load instructions on any
                path in c.
            For (each load d in c) do:
                  add 1/m to d’s latency.
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Computing the Schedule Using
Adjusted Latencies

Once latencies are assigned to each
load (other instructions have a
latency of 1), we annotate each
instruction in the Dependency DAG
with its critical path weight: the
maximum latency (along any path)
from the instruction to a Leaf of the
DAG.

Instructions are scheduled using
critical path values; the root with the
highest critical path value is always
scheduled next. In cases of ties (same
critical path value), operations with
the longest latency are scheduled
first.
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Example

Ld
1

Ld
2

Ld
3

Ld
4 I1 I2 I3 I4 I5 Latency

Load1 1+0 = 1

Load2 1/2 1/2 1/2 1/2 1+2 = 3

Load3 1/2 1/2 1/2 1/2 1+2 = 3

Load4 1 1 1 1+3 = 4

Load1

Inst1

Load2 Inst2 Inst4

Load3 Inst3

Load4

Inst5

End 0

1

1

5

4 6

77

8

9
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Using the annotated Dependency Dag,
instructions can be scheduled:

Load1

Inst1

Load2 Inst2 Inst4

Load3 Inst3

Load4

Inst5

End 0

1

1

5

4 6

77

8

9

Load1
Inst1
Load2
Inst2
Inst3
Load4
Load3
Inst4
Inst5

(0 latency; unavoidable)

(3 instruction latency)

(2 instruction latency)
(1 instruction latency)


