
178CS 701 Fall 2005
©

Code Scheduling
Modern processors are pipelined.
They give the impression that all
instructions take unit time by
executing instructions in stages
(steps), as if on an assembly line.
Certain instructions though (loads,
floating point divides and square
roots, delayed branches) take more
than one cycle to execute.
These instructions may stall (halt the
processor) or require a nop (null
operation) to execute properly.
A Code Scheduling phase may be
needed in a compiler to avoid stalls or
eliminate nops.

179CS 701 Fall 2005
©

Scheduling Expression DAGs
After generating code for a DAG or
basic block, we may wish to schedule
(reorder) instructions to reduce or
eliminate stalls.

A Postpass Scheduler is run after code
selection and register allocation.

Postpass schedulers are very general
and flexible, since they can be used
with code generated by any compiler
with any degree of optimization

But, since they can’t modify register
allocations, they can’t always avoid
stalls.

180CS 701 Fall 2005
©

Dependency DAGs
Obviously, not all reorderings of
generated instructions are acceptable.

Computation of a register value must
precede all uses of that value.
A store of a value must precede all
loads that might read that value.

A Dependency Dag reflects essential
ordering constraints among instructions:
• Nodes are Instructions to be scheduled.

• An arc from Instruction i to Instruction j
indicates that i must be executed before
j may be executed.

181CS 701 Fall 2005
©

Kinds of Dependencies
We can identify several kinds of
dependencies:
• True Dependence:

An operation that uses a value has a
true dependence (also called a flow
dependence) upon an earlier
operation that computes the value.
For example:

mov 1, %l2

add %l2, 1, %l2

• Anti Dependence:
An operation that writes a value has a
anti dependence upon an earlier
operation that reads the value. For
example:

add %l2, 1, %l0
mov 1, %l2

182CS 701 Fall 2005
©

• Output Dependence:
An operation that writes a value has a
output dependence upon an earlier
operation that writes the value. For
example:

mov 1, %l2

mov 2, %l2

Collectively, true, anti and output
dependencies are called data
dependencies. Data dependencies
constrain the order in which
instructions may be executed.

183CS 701 Fall 2005
©

Example
Consider the code that might be
generated for
a = ((a+b) + (c*d)) + ((c+d) * d);

We’ll assume 4 registers, the
minimum possible, and we’ll reuse
already loaded values.
Assume a 1 cycle stall between a load
and use of the loaded value and a 2
cycle stall between a multiplication
and first use of the product.

184CS 701 Fall 2005
©

1. ld [a], %r1
2. ld [b], %r2
3. add %r1,%r2,%r1
4. ld [c], %r2
5. ld [d], %r3
6. smul %r2,%r3,%r4
7. add %r1,%r4,%r1
8. add %r2,%r3,%r2
9. smul %r2,%r3,%r2
10. add %r1,%r2,%r1
11. st %r1,[a]

Stall

Stall
Stall*2

Stall*2

(6 Stalls Total)

1 2

3 4

5

6

7

8 9

10

11

185CS 701 Fall 2005
©

Scheduling Requires
Topological Traversal

Any valid code schedule is a
Topological Sort of the dependency
dag.

To create a code schedule you
(1) Pick any root of the Dag.
(2) Remove it from the Dag and

schedule it.
(3) Iterate!

Choosing a Minimum Delay schedule
is NP-Complete:
 “Computers and Intractability,”
M. Garey and D. Johnson,
W.H. Freeman, 1979.

186CS 701 Fall 2005
©

Dynamically Scheduled
(Out of Order) Processors

To avoid stalls, some processors can
execute instructions Out of Program
Order.
If an instruction can’t execute
because a previous instruction it
depends upon hasn’t completed yet,
the instruction can be “held” and a
successor instruction executed
instead.
When needed predecessors have
completed, the held instruction is
released for execution.

187CS 701 Fall 2005
©

Example
1. ld [a], %r1
2. ld [b], %r2

3. add %r1,%r2,%r1
4. ld [c], %r2

7. add %r1,%r4,%r1

8. add %r2,%r3,%r2
9. smul %r2,%r3,%r2

10. add %r1,%r2,%r1
11. st %r1,[a]

Stall

Stall

(2 Stalls Total)

5. ld [d], %r3

6. smul %r2,%r3,%r4

1 2

3 4

5

6

7

8 9

10

11

188CS 701 Fall 2005
©

Limitations of Dynamic
Scheduling
1. Extra processor complexity.
2. Register renaming (to avoid False

Dependencies) may be needed.
3. Identifying instructions to be delayed

 takes time.
4. Instructions “late” in the program

can’t be started earlier.

189CS 701 Fall 2005
©

Reading Assignment
• Read Goodman and Hsu’s paper, “Code

Scheduling and Register Allocation in
Large Basic Blocks.”

• Read Bernstein and Rodeh’s paper,
“Global Instruction Scheduling for
Superscalar Machines.”
(Linked from the class Web page.)

190CS 701 Fall 2005
©

Gibbons & Muchnick Postpass
Code Scheduler
1. If there is only one root, schedule it.
2. If there is more than one root,

 choose that root that won’t be
stalled by instructions already
scheduled.

3. If more than one root can be
scheduled without stalling,

 consider the following rules
 (in order);
 (a) Does this root stall any of its

successors?
(If so, schedule it immediately.)

(b) How many new roots are exposed
if this node is scheduled?
(More is better.)

191CS 701 Fall 2005
©

(c) Which root has the longest
weighted path to a leaf (using
instruction delays as the weight).
(The “critical path” in the DAG
gets priority.)

192CS 701 Fall 2005
©

Example
1. ld [a], %r1 //Longest path
2. ld [b], %r2

3. add %r1,%r2,%r1
4. ld [c], %r2

7. add %r1,%r4,%r1

8. add %r2,%r3,%r2
9. smul %r2,%r3,%r2

10. add %r1,%r2,%r1
11. st %r1,[a] (2 Stalls Total)

5. ld [d], %r3

6. smul %r2,%r3,%r4

//Exposes a root
//Not delayed

//Only choice

//Only choice

//Stalls succ.

//Not delayed
//Not delayed

//Only choice

//Only choice

1 2

3 4

5

6

7

8 9

10

11
1

23

56689

81111

193CS 701 Fall 2005
©

False Dependencies
We still have delays in the schedule
that was produced because of “false
dependencies.”
Both b and c are loaded into %r2.
This limits the ability to move the
load of c prior to any use of %r2 that
uses b.
To improve our schedule we can use a
processor that renames registers or
allocate additional registers to
remove false dependencies.

194CS 701 Fall 2005
©

Register Renaming
Many out of order processors
automatically rename distinct uses of
the same architectural register to
distinct internal registers.

Thus
 ld [a],%r1
 ld [b],%r2
 add %r1,%r2,%r1
 ld [c],%r2

is executed as if it were
 ld [a],%r1
 ld [b],%r2
 add %r1,%r2,%r3
 ld [c],%r4

Now the final load can be executed
prior to the add, eliminating a stall.

195CS 701 Fall 2005
©

Compiler Renaming
A compiler can also use the idea of
renaming to avoid unnecessary stalls.
An extra register may be needed (as
was the case for scheduling
expression trees).
Also, a round-robin allocation policy
is needed. Registers are reused in a
cyclic fashion, so that the most
recently freed register is reused last,
not first.

196CS 701 Fall 2005
©

Example
1. ld [a], %r1
2. ld [b], %r2
3. add %r1,%r2,%r1
4. ld [c], %r3
5. ld [d], %r4
6. smul %r3,%r4,%r5
7. add %r1,%r5,%r2
8. add %r3,%r4,%r3
9. smul %r3,%r4,%r3
10. add %r2,%r3,%r2
11. st %r2,[a]

Stall

Stall
Stall*2

Stall*2

(6 Stalls Total)

1 2

3 4

5

6

7

8 9

10

11

197CS 701 Fall 2005
©

After Scheduling:
4. ld [c], %r3 //Longest path
5. ld [d], %r4

2. ld [b], %r2

7. add %r1,%r5,%r2

8. add %r3,%r4,%r3
9. smul %r3,%r4,%r3

10. add %r2,%r3,%r2
11. st %r2,[a] (0 Stalls Total)

1. ld [a], %r1

6. smul %r3,%r4,%r5

//Exposes a root
//Stalls succ.

//Stalls succ.

//Stalls succ .

//Only choice

//Only choice

//Exposes a root

//Longest path

3. add %r1,%r2,%r1 //Only choice

1 2

3 4

5

6

7

8 9

10

11
1

23

56684

866

198CS 701 Fall 2005
©

Balanced Scheduling
When scheduling a load, we normally
anticipate the best case, a hit in the
primary cache.
On older architectures this makes
sense, since we stall execution on a
cache miss.
Many newer architectures are non-
blocking. This means we can continue
execution after a miss until the
loaded value is used.
Assume a Cache miss takes N cycles
(N is typically 10 or more).
Do we schedule a load anticipating a
1 cycle delay (a hit) or an N cycle
delay (a miss)?

199CS 701 Fall 2005
©

Neither Optimistic Scheduling (expect a
hit) nor Pessimistic Scheduling (expect a
miss) is always better.
Consider

An Optimistic Schedule is

A Pessimistic Schedule is

load

Inst1

Inst2

Inst3

Inst4

load
Inst2
Inst1
Inst3
Inst4

Fine for a hit;
inferior for a miss.

load
Inst2
Inst3
Inst1
Inst4

Fine for a hit;
better for a miss.

200CS 701 Fall 2005
©

But things become more complex with
multiple loads

An Optimistic Schedule is

A Pessimistic Schedule is

load1

load2

Inst1

Inst2

Inst3

load1
Inst1
load2
Inst2
Inst3

Better for hits;
same for misses.

load1
Inst1
Inst2
load2
Inst3

Worse for hits;
same for misses.

201CS 701 Fall 2005
©

Balance Placement of Loads
Eggers suggests a balanced scheduler
that spaces out loads, using available
independent instructions as “filler.”
The insight is that scheduling should
not be driven by worst-case latencies
but rather by available Independent
Instructions.
For

it produces

load

Inst1

Inst2

Inst3

Inst4

load
Inst2
Inst3
Inst1
Inst4

Good; maximum
distance between
load and Inst1 in
case of a miss.

202CS 701 Fall 2005
©

For

balanced scheduling produces

load1

load2

Inst1

Inst2

Inst3

load1
Inst1
load2
Inst2
Inst3

Good for hits;
as good as
possible for misses.

203CS 701 Fall 2005
©

Idea of the Algorithm
Look at each Instruction, i, in the
Dependency DAG.
Determine which loads can run in
parallel with i and use all (or part) of
i’s execution time to cover the latency
of these loads.

204CS 701 Fall 2005
©

Compute available latency of each load:
 Give each load instruction an initial

latency of 1.
 For (each instruction i in the
 Dependency DAG) do:
 Consider Instructions Independent

of i:
 Gind = DepDAG -
 (AllPred(i) U AllSucc(i) U {i})
 For (each connected subgraph c
 in Gind) do:

 Find m = maximum number of
 load instructions on any
 path in c.
 For (each load d in c) do:
 add 1/m to d’s latency.

205CS 701 Fall 2005
©

Computing the Schedule Using
Adjusted Latencies

Once latencies are assigned to each
load (other instructions have a
latency of 1), we annotate each
instruction in the Dependency DAG
with its critical path weight: the
maximum latency (along any path)
from the instruction to a Leaf of the
DAG.

Instructions are scheduled using
critical path values; the root with the
highest critical path value is always
scheduled next. In cases of ties (same
critical path value), operations with
the longest latency are scheduled
first.

206CS 701 Fall 2005
©

Example

Ld
1

Ld
2

Ld
3

Ld
4 I1 I2 I3 I4 I5 Latency

Load1 1+0 = 1

Load2 1/2 1/2 1/2 1/2 1+2 = 3

Load3 1/2 1/2 1/2 1/2 1+2 = 3

Load4 1 1 1 1+3 = 4

Load1

Inst1

Load2 Inst2 Inst4

Load3 Inst3

Load4

Inst5

End 0

1

1

5

4 6

77

8

9

207CS 701 Fall 2005
©

Using the annotated Dependency Dag,
instructions can be scheduled:

Load1

Inst1

Load2 Inst2 Inst4

Load3 Inst3

Load4

Inst5

End 0

1

1

5

4 6

77

8

9

Load1
Inst1
Load2
Inst2
Inst3
Load4
Load3
Inst4
Inst5

(0 latency; unavoidable)

(3 instruction latency)

(2 instruction latency)
(1 instruction latency)

