
195CS 701 Fall 2005
©

Compiler Renaming
A compiler can also use the idea of
renaming to avoid unnecessary stalls.
An extra register may be needed (as
was the case for scheduling
expression trees).
Also, a round-robin allocation policy
is needed. Registers are reused in a
cyclic fashion, so that the most
recently freed register is reused last,
not first.

196CS 701 Fall 2005
©

Example
1. ld [a], %r1
2. ld [b], %r2
3. add %r1,%r2,%r1
4. ld [c], %r3
5. ld [d], %r4
6. smul %r3,%r4,%r5
7. add %r1,%r5,%r2
8. add %r3,%r4,%r3
9. smul %r3,%r4,%r3
10. add %r2,%r3,%r2
11. st %r2,[a]

Stall

Stall
Stall*2

Stall*2

(6 Stalls Total)

1 2

3 4

5

6

7

8 9

10

11

197CS 701 Fall 2005
©

After Scheduling:
4. ld [c], %r3 //Longest path
5. ld [d], %r4

2. ld [b], %r2

7. add %r1,%r5,%r2

8. add %r3,%r4,%r3
9. smul %r3,%r4,%r3

10. add %r2,%r3,%r2
11. st %r2,[a] (0 Stalls Total)

1. ld [a], %r1

6. smul %r3,%r4,%r5

//Exposes a root
//Stalls succ.

//Stalls succ.

//Stalls succ .

//Only choice

//Only choice

//Exposes a root

//Longest path

3. add %r1,%r2,%r1 //Only choice

1 2

3 4

5

6

7

8 9

10

11
1

23

56684

866

198CS 701 Fall 2005
©

Balanced Scheduling
When scheduling a load, we normally
anticipate the best case, a hit in the
primary cache.
On older architectures this makes
sense, since we stall execution on a
cache miss.
Many newer architectures are non-
blocking. This means we can continue
execution after a miss until the
loaded value is used.
Assume a Cache miss takes N cycles
(N is typically 10 or more).
Do we schedule a load anticipating a
1 cycle delay (a hit) or an N cycle
delay (a miss)?

199CS 701 Fall 2005
©

Neither Optimistic Scheduling (expect a
hit) nor Pessimistic Scheduling (expect a
miss) is always better.
Consider

An Optimistic Schedule is

A Pessimistic Schedule is

load

Inst1

Inst2

Inst3

Inst4

load
Inst2
Inst1
Inst3
Inst4

Fine for a hit;
inferior for a miss.

load
Inst2
Inst3
Inst1
Inst4

Fine for a hit;
better for a miss.

200CS 701 Fall 2005
©

But things become more complex with
multiple loads

An Optimistic Schedule is

A Pessimistic Schedule is

load1

load2

Inst1

Inst2

Inst3

load1
Inst1
load2
Inst2
Inst3

Better for hits;
same for misses.

load1
Inst1
Inst2
load2
Inst3

Worse for hits;
same for misses.

201CS 701 Fall 2005
©

Balance Placement of Loads
Eggers suggests a balanced scheduler
that spaces out loads, using available
independent instructions as “filler.”
The insight is that scheduling should
not be driven by worst-case latencies
but rather by available Independent
Instructions.
For

it produces

load

Inst1

Inst2

Inst3

Inst4

load
Inst2
Inst3
Inst1
Inst4

Good; maximum
distance between
load and Inst1 in
case of a miss.

202CS 701 Fall 2005
©

For

balanced scheduling produces

load1

load2

Inst1

Inst2

Inst3

load1
Inst1
load2
Inst2
Inst3

Good for hits;
as good as
possible for misses.

203CS 701 Fall 2005
©

Idea of the Algorithm
Look at each Instruction, i, in the
Dependency DAG.
Determine which loads can run in
parallel with i and use all (or part) of
i’s execution time to cover the latency
of these loads.

204CS 701 Fall 2005
©

Compute available latency of each load:
 Give each load instruction an initial

latency of 1.
 For (each instruction i in the
 Dependency DAG) do:
 Consider Instructions Independent

of i:
 Gind = DepDAG -
 (AllPred(i) U AllSucc(i) U {i})
 For (each connected subgraph c
 in Gind) do:

 Find m = maximum number of
 load instructions on any
 path in c.
 For (each load d in c) do:
 add 1/m to d’s latency.

205CS 701 Fall 2005
©

Computing the Schedule Using
Adjusted Latencies

Once latencies are assigned to each
load (other instructions have a
latency of 1), we annotate each
instruction in the Dependency DAG
with its critical path weight: the
maximum latency (along any path)
from the instruction to a Leaf of the
DAG.

Instructions are scheduled using
critical path values; the root with the
highest critical path value is always
scheduled next. In cases of ties (same
critical path value), operations with
the longest latency are scheduled
first.

206CS 701 Fall 2005
©

Example

Ld
1

Ld
2

Ld
3

Ld
4 I1 I2 I3 I4 I5 Latency

Load1 1+0 = 1

Load2 1/2 1/2 1/2 1/2 1+2 = 3

Load3 1/2 1/2 1/2 1/2 1+2 = 3

Load4 1 1 1 1+3 = 4

Load1

Inst1

Load2 Inst2 Inst4

Load3 Inst3

Load4

Inst5

End 0

1

1

5

4 6

77

8

9

207CS 701 Fall 2005
©

Using the annotated Dependency Dag,
instructions can be scheduled:

Load1

Inst1

Load2 Inst2 Inst4

Load3 Inst3

Load4

Inst5

End 0

1

1

5

4 6

77

8

9

Load1
Inst1
Load2
Inst2
Inst3
Load4
Load3
Inst4
Inst5

(0 latency; unavoidable)

(3 instruction latency)

(2 instruction latency)
(1 instruction latency)

208CS 701 Fall 2005
©

Goodman/Hsu Integrated Code
Scheduler

Prepass Schedulers:
 Schedule code prior to register

allocation.
 Can overuse registers—Always

using a “fresh” register maximizes
 freedom to rearrange Instructions.

Postpass Schedulers:
 Schedule code after register

allocation.
Can be limited by “false
dependencies” induced by register
reuse.

 Example is Gibbons/Muchnick
heuristic.

209CS 701 Fall 2005
©

Integrated Schedulers
Capture best of both approaches.

When registers are plentiful, use
additional registers to avoid stalls.
Goodman & Hsu call this CSP:
 Code Scheduling for Pipelines.

When registers are scarce, switch to a
policy that frees registers.
Goodman & Hsu call this CSR:
 Code Scheduling to free Registers.

210CS 701 Fall 2005
©

Assume code is generated in single
assignment form, with a unique
pseudo-register for each computed
value.

We schedule from a DAG where nodes
are operations (to be mapped to
instructions), and arcs represent data
dependencies.

Each node will have an associated
Cost, that measures the execution and
stall time of the instruction that the
node represents.

Nodes are labeled with a critical path
cost, used to select the “most critical”
instructions to schedule.

211CS 701 Fall 2005
©

Definitions
Leader Set:

Set of DAG nodes ready to be
scheduled, possibly with an
interlock.

Ready Set:
Subset of Leader Set; Nodes ready
to be scheduled without an
interlock.

AvailReg:
A count of currently unused
registers.

MinThreshold:
Threshold at which heuristic will
switch from avoiding interlocks to
reducing registers in use.

212CS 701 Fall 2005
©

Goodman/Hsu Heuristic:
while (DAG ≠ φ) {

 if (AvailReg > MinThreshold)
 if (ReadySet ≠ φ)
 Select Ready node with Max cost
 else Select Leader node with Max cost
 else // Reduce Registers in Use
 if (∃ node ∈ ReadySet that frees registers){
 Select node that frees most registers
 If (selected node isn’t unique)
 Select node with Max cost }
 elsif (∃ node ∈ LeaderSet that frees regs){
 Select node that frees most registers
 If (selected node isn’t unique)
 Select node with fewest interlocks}
 else find a partially evaluated path and

select a leader from this path
 else Select any node in ReadySet
 else Select any node in LeaderSet
Schedule Selected node
Update AvailReg count }//end while

213CS 701 Fall 2005
©

Example
We’ll again consider
a = ((a+b) + (c*d)) + ((c+d) * d);

Again, assume a 1 cycle stall between
a load and use of its value and a 2
cycle stall between a multiplication
and first use of the product.

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

214CS 701 Fall 2005
©

We’ll try 4 registers (the minimum),
then 5 registers.
Should MinThreshold be 0 or 1?

At MinThreshold = 1, we always
have a register to hold a result, but
we may force a register to be spilled
too soon!

At MinThreshold = 0, we may be
forced to spill a register to free a
result register.
But, we’ll also be able to schedule
more aggressively.
Is a spill or stall worse?
Note that we may be able to “hide”
a spill in a delay slot!

We’ll be aggressive and use
MinThreshold = 0.

215CS 701 Fall 2005
©

4 Registers Used (1 Stall)

Instruction Comment Regs
Used

ld [c], %r1 Choose ready, cost=8 1
ld [d], %r2 Choose ready, cost=8 2
ld [a], %r3 Choose ready, cost=6 3
smul %r1,%r2,%r4 Choose ready, cost=6 4
add %r1,%r2,%r1 Free a register 4
smul %r1,%r2,%r1 Free a register 3
ld [b], %r2 Choose ready, cost=6 4
add %r3,%r2,%r3 ← Choose a leader 3
add %r3,%r4,%r3 No choice 2
add %r3,%r1,%r3 No choice 1
st %r3,[a] No choice 0

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

216CS 701 Fall 2005
©

5 Registers Used (No Stalls)

Instruction Comment Regs
Used

ld [c], %r1 Choose ready, cost=8 1
ld [d], %r2 Choose ready, cost=8 2
ld [a], %r3 Choose ready, cost=6 3
smul %r1,%r2,%r4 Choose ready, cost=6 4
add %r1,%r2,%r1 Choose ready, cost=6 4
ld [b], %r5 Choose ready, cost=6 5
smul %r1,%r2,%r1 Free a register 4
add %r3,%r5,%r3 Choose ready, cost=4 3
add %r3,%r4,%r3 No choice 2
add %r3,%r1,%r3 No choice 1
st %r3,[a] No choice 0

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

217CS 701 Fall 2005
©

Scheduling for Superscalar &
Multiple Issue Machines

A number of computers have the
ability to issue more than one
instruction per cycle if the
instructions are independent and
satisfy constraints on available
functional units.

Thus the instructions
 add %r1,1,%r2
 sub %r1,2,%r3

can issue and execute in parallel,
but

add %r1,1,%r2
 sub %r2,2,%r3

 must execute sequentially.

218CS 701 Fall 2005
©

Instructions that are linked by true or
output dependencies must execute
sequentially, but instructions that are
linked by an anti dependence may
execute concurrently.
For example,
 add %r1,1,%r2
 sub %r3,2,%r1

can issue and execute in parallel.

The code scheduling techniques we’ve
studied can be used to schedule
machines that can issue 2 or more
independent instructions simultaneously.

We select pairs (or triples or n-tuples),
verifying (with the Dependence Dag)
that they are independent or anti
dependent.

219CS 701 Fall 2005
©

Example: 5 Registers
(2 Wide Issue)

We need only 8 cycles rather than 11.

1 ld [c], %r1 ld [d], %r2

2 ld [a], %r3 ld [b], %r4

3 smul %r1,%r2,%r5 add %r1,%r2,%r1

4 add %r3,%r4,%r3 smul %r1,%r2,%r1

5 nop nop

6 add %r3,%r5,%r3 nop

7 add %r3,%r1,%r3 nop

8 st %r3,[a] nop

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

220CS 701 Fall 2005
©

5 Registers (3 Wide Issue)

We still need 8 cycles!

1 ld [c], %r1 ld [d], %r2 ld [a],%r3

2 ld [b], %r4 nop nop

3 smul %r1,%r2,%r5 add %r1,%r2,%r1 nop

4 add %r3,%r4,%r3 smul %r1,%r2,%r1 nop

5 nop nop nop

6 add %r3,%r5,%r3 nop nop

7 add %r3,%r1,%r3 nop nop

8 st %r3,[a] nop nop

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

221CS 701 Fall 2005
©

Finding Additional Independent
Instructions for Parallel Issue
We can extend the capabilities of
processors:
• Out of order execution allows a

processor to “search ahead” for
independent instructions to launch.

• But, since basic blocks are often quite
small, the processor may need to
accurately predict branches, issuing
instructions before the execution path is
fully resolved.

• But, since branch predictions may be
wrong, it will be necessary to “undo”
instructions executed speculatively.

