
221CS 701 Fall 2005
©

Finding Additional Independent
Instructions for Parallel Issue
We can extend the capabilities of
processors:
• Out of order execution allows a

processor to “search ahead” for
independent instructions to launch.

• But, since basic blocks are often quite
small, the processor may need to
accurately predict branches, issuing
instructions before the execution path is
fully resolved.

• But, since branch predictions may be
wrong, it will be necessary to “undo”
instructions executed speculatively.

222CS 701 Fall 2005
©

Compiler Support for
Extended Scheduling
• Trace Scheduling

Gather sequences of basic blocks
together and schedule them as a unit.

• Global Scheduling
Analyze the control flow graph and
move instructions across basic block
boundaries to improve scheduling.

• Software Pipelining
Select instructions from several loop
iterations and schedule them
together.

223CS 701 Fall 2005
©

Trace Scheduling
Reference:
J. Fisher, “Trace Scheduling: A
Technique for Global Microcode
Compaction,” IEEE Transactions on
Computers, July 1981.

Idea:
Since basic blocks are often too small
to allow effective code scheduling, we
will profile a program’s execution and
identify the most frequently executed
paths in a program.

Sequences of contiguous basic blocks
on frequently executed paths will be
gathered together into traces.

224CS 701 Fall 2005
©

Trace
• A sequence of basic blocks (excluding

loops) executed together can form a
trace.

• A trace will be scheduled as a unit,
allowing a larger span of instructions for
scheduling.

• A loop can be unrolled or scheduled
individually.

• Compensation code may need to be
added when a branch into, or out of, a
trace occurs.

225CS 701 Fall 2005
©

Example

Assume profiling shows that
B1→B3→B4+→B5→B7
is the most common execution path.
The traces extracted from this path are
B1→B3, B4, and B5→B7.

B1

B2 B3

B4

B5 B6 B7

226CS 701 Fall 2005
©

Compensation Code
When we move instructions across
basic block boundaries within a trace,
we may need to add extra
instructions that preserve program
semantics on paths that enter or
leave the trace.

227CS 701 Fall 2005
©

Example
In the previous example, basic block
B1 had B2 and B3 as successors, and
B1→B3 formed a trace.

x = x+1
y = x-y
x<5

z=x*z
x=x+1

y=2*y
x=x-2

1

2

3

x = x+1

z=x*z
x=x+1

y=2*y
x=x-2

1

2

3

Before Scheduling

y = x-y

x<5

y = x-y

After Scheduling

228CS 701 Fall 2005
©

Advantages & Disadvantages
• Trace scheduling allows scheduling to

span multiple basic blocks. This can
significantly increase the effectiveness
of scheduling, especially in the context
of superscalar processors (which need ILP
to be effective).

• Trace Scheduling can also increase code
size (because of compensation code).
It is also sensitive to the accuracy of
trace estimates.

229CS 701 Fall 2005
©

Reading Assignment
• Read pp 367-386 of Allan et. al.’s paper,

“Software Pipelining.”
(Linked from the class Web page.)

230CS 701 Fall 2005
©

Global Code Scheduling
• Bernstein and Rodeh approach.

• A prepass scheduler
(does scheduling before register
allocation).

• Can move instructions across basic block
boundaries.

• Prefers to move instructions that must
eventually be executed.

• Can move Instructions speculatively,
possibly executing instructions
unnecessarily.

231CS 701 Fall 2005
©

Data & Control Dependencies
When moving instructions across
basic block boundaries, we must
respect both data dependencies and
control dependencies.

Data dependencies specify necessary
orderings among instructions that
produce a value and instructions that
use that value.

Control dependencies determine when
(and if) various instructions are
executed. Thus an instruction is
control dependent on expressions
that affect flow of control to that
instruction.

232CS 701 Fall 2005
©

Definitions used in Global
Scheduling
• Basic Block A dominates Basic Block B if

and only if A appears on all paths to B.

• Basic Block B postdominates Basic Block
A if and only if B appears on all paths
from A to an exit point.

• Basic Blocks A and B are equivalent if
and only if A dominates B and B
postdominates A.

• Moving an Instruction from Basic Block
B to Basic Block A is useful if and only if
A and B are equivalent.

• Moving an Instruction from Basic Block
B to Basic Block A is speculative if B does
not postdominate A.

233CS 701 Fall 2005
©

• Moving an Instruction from Basic Block
B to Basic Block A requires duplication if
A does not dominate B.

We prefer a move that does not require
duplication. (Why?)
The degree of speculation in moving an
instruction from one basic block to
another can be quantified:
• Moving an Instruction from Basic Block

B to Basic Block A is n-branch
speculative if n conditional branches
occur on a path from A to B.

234CS 701 Fall 2005
©

Example
 d = a + b;
 if (d != 0)
 flag = 1;
 else flag = 0;
 f = d - g;

Blocks 1 and 4 are equivalent.
Moving an Instruction from B2 to B1
(or B3 to B1) is 1-branch speculative.
Moving an Instruction from B4 to B2
(or B4 to B3) requires duplication.

d = a + b
d != 0

flag = 1 flag = 0

f = d - g

T F

1

2 3

4

235CS 701 Fall 2005
©

Limits on Code Motion
Assume that pseudo registers are used
in generated code (prior to register
allocation).
To respect data dependencies:
• A use of a Pseudo Register can’t be

moved above its definition.

• Memory loads can’t be moved ahead
of Stores to the same location.

• Stores can’t be moved ahead of either
loads or stores to the same location.

• A load of a memory location can be
moved ahead of another load of the
same location (such a load may often
optimized away by equivalencing the
two pseudo registers).

236CS 701 Fall 2005
©

Example (Revisited)
block1:
 ld [a],Pr1
 ld [b],Pr2

 add Pr1,Pr2,Pr3 ← Stall
 st Pr3,[d]
 cmp Pr3,0
 be block3
block2:
 mov 1,Pr4
 st Pr4,[flag]
 b block4
block3:
 st 0,[flag]
block4:
 ld [d],Pr5
 ld [g],Pr6

 sub Pr5,Pr6,Pr7 ← Stall
 st Pr7,[f]

In B1 and B4, the number of available
registers is irrelevant in avoiding
stalls. There are too few independent
instructions in each block.

237CS 701 Fall 2005
©

Global Scheduling
Restrictions (in Bernstein/
Rodeh Heuristic)
1. Subprograms are divided into Regions.

A region is a loop body or the
subprogram body without enclosed
loops.

2. Regions are scheduled inside-out.
3. Instructions never cross region

boundaries.
4. All instructions move “upward” (to

earlier positions in the instruction
order).

5. The original order of branches is
preserved.

238CS 701 Fall 2005
©

Lesser (temporary) restrictions Include:
6. No code duplication.
7. Only 1-branch speculation.
8. No new basic blocks are created or

added.

239CS 701 Fall 2005
©

Scheduling Basic Blocks in a
CFG

Basic blocks are visited and scheduled
in Topological Order. Thus all of a
block’s predecessors are scheduled
before it is.
Two levels of scheduling are possible
(depending on whether speculative
execution is allowed or not):
1. When Basic Block A is scheduled,
 only Instructions in A and blocks
 equivalent to A that A dominates
 are considered.
 (Only “useful” instructions are
 considered.)

240CS 701 Fall 2005
©

2. Blocks that are immediate
successors of those considered in

 (1) are also considered.
 (This allows 1-branch

speculation.)

241CS 701 Fall 2005
©

Candidate Instructions
We first compute the set of basic
blocks that may contribute
instructions when block A is
scheduled. (Either blocks equivalent
to A or blocks at most 1-branch
speculative.)

242CS 701 Fall 2005
©

An individual Instruction, Inst, in this
set of basic blocks may be scheduled
in A if:
1. It is located in A.
2. It is in a block equivalent to A and

may be moved across block
boundaries.

 (Some instructions, like calls, can’t
 be moved.)
3. It is not in a block equivalent to A,

but may be scheduled speculatively.
 (Some instructions, like stores,

can’t be executed speculatively.)

243CS 701 Fall 2005
©

Selecting Instructions to Issue
• A list of “ready to issue” instructions in

block A and in bocks equivalent to A (or
1-branch distant from A) is maintained.

• All data dependencies must be satisfied
and stalls avoided (if possible).

• N independent instructions are selected,
where N is the processor’s issue-width.

• But what if more than N instructions are
ready to issue?

• Selection is by Priority, using two
Scheduling Heuristics.

244CS 701 Fall 2005
©

Delay Heuristic
This value is computed on a per-basic
block basis.
It estimates the worst-case delay
(stalls) from an Instruction to the end
of the basic block.

D(I) = 0 if I is a leaf.

Let d(I,J) be the delay if instruction J
follows instruction I in the code
schedule.

D(I) = Max (D(Ji)+d(I,Ji))
Ji ∈ Succ(I)

245CS 701 Fall 2005
©

Example of Delay Values
block1:
1. ld [a],Pr1
2. ld [b],Pr2
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]
5. cmp Pr3,0
6. be block3

(Assume only loads can stall.)

1 2

3

4 5

6

0

0 0

0

1 1

246CS 701 Fall 2005
©

Critical Path Heuristic
This value is also computed on a per-
basic block basis.
It estimates how long it will take to
execute Instruction I, and all I’s
successors, assuming unlimited
parallelism.

E(I) = Execution time for instruction I
 (normally 1 for pipelined

machines)
CP(I) = E(I) if I is a leaf.

CP(I) = E(I) + Max (CP(Ji)+d(I,Ji))
∈ Succ(I)Ji

247CS 701 Fall 2005
©

Example of Critical Path
Values

block1:
1. ld [a],Pr1
2. ld [b],Pr2
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]
5. cmp Pr3,0
6. be block3

1 2

3

4 5

6

1

2 2

3

5 5

248CS 701 Fall 2005
©

Selecting Instructions to Issue
From the Ready Set (instructions with all
dependencies satisfied, and which will
not stall) use the following priority rules:

1. Instructions in block A and blocks
 equivalent to A have priority over
 other (speculative) blocks.
2. Instructions with the highest D

values have priority.
3. Instructions with the highest CP

values have priority.
These rules imply that we schedule
useful instructions before speculative
ones, instructions on paths with
potentially many stalls over those with
fewer stalls, and instructions on critical
paths over those on non-critical paths.

249CS 701 Fall 2005
©

Example
block1:
1. ld [a],Pr1
2. ld [b],Pr2
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]
5. cmp Pr3,0
6. be block3
block2:
7. mov 1,Pr4
8. st Pr4,[flag]
9. b block4
block3:
10. st 0,[flag]
block4:
11. ld [d],Pr5
12. ld [g],Pr6
13. sub Pr5,Pr6,Pr7
14. st Pr7,[f]

1 2

3

4 5

6

0,1

0,2 0,2

0,3

1,5 1,5

8 9
0,2 0,1

7
0,3

10
0,1

11 12

13
0,2

1,4 1,4

14
0,1

250CS 701 Fall 2005
©

We’ll schedule without speculation;
highest D values first, then highest CP
values.

block1:
1. ld [a],Pr1
2. ld [b],Pr2

1 2

3

4 5

6

0,1

0,2 0,2

0,3

1,5 1,5

8 9
0,2 0,1

7
0,3

10
0,1

11 12

13
0,2

1,4 1,4

14
0,1

12. ld [g],Pr6

251CS 701 Fall 2005
©

Next, come Instructions 3 and 4.
block1:
1. ld [a],Pr1
2. ld [b],Pr2

3

4 5

6

0,1

0,2 0,2

0,3

8 9
0,2 0,1

7
0,3

10
0,1

11

13
0,2

1,4

14
0,1

12. ld [g],Pr6
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]

252CS 701 Fall 2005
©

Now 11 can issue (D=1), followed by 5,
13, 6 and 14. Block B4 is now empty, so
B3 and B4 are scheduled.

There are no stalls. In fact, if we
equivalence Pr3 and Pr5 , Instruction 11
can be removed.

block1:
1. ld [a],Pr1
2. ld [b],Pr2

5

6

0,1

0,2

8 9
0,2 0,1

7
0,3

10
0,1

11

13
0,2

1,4

14
0,1

12. ld [g],Pr6
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]

5. cmp Pr3,0
11. ld [d],Pr5

14. st Pr7,[f]
block2:
7. mov 1,Pr4
8. st Pr4,[flag]
9. b block4
block3:
10. st 0,[flag]
block4:

13. sub Pr5,Pr6,Pr7
6. be block3

