
243CS 701  Fall 2005
©

Selecting Instructions to Issue
• A list of “ready to issue” instructions in

block A and in bocks equivalent to A (or
1-branch distant from A) is maintained.

• All data dependencies must be satisfied
and stalls avoided (if possible).

• N independent instructions are selected,
where N is the processor’s issue-width.

• But what if more than N instructions are
ready to issue?

• Selection is by Priority, using two
Scheduling Heuristics.

244CS 701  Fall 2005
©

Delay Heuristic
This value is computed on a per-basic
block basis.
It estimates the worst-case delay
(stalls) from an Instruction to the end
of the basic block.

D(I) = 0  if I is a leaf.

Let d(I,J) be the delay if instruction J
follows instruction I in the code
schedule.

D(I) = Max (D(Ji)+d(I,Ji))
Ji ∈ Succ(I)

245CS 701  Fall 2005
©

Example of Delay Values
block1:
1.  ld   [a],Pr1
2.  ld   [b],Pr2
3.  add  Pr1,Pr2,Pr3
4.  st   Pr3,[d]
5.  cmp  Pr3,0
6.  be   block3

(Assume only loads can stall.)

1 2

3

4 5

6

0

0 0

0

1 1

246CS 701  Fall 2005
©

Critical Path Heuristic
This value is also computed on a per-
basic block basis.
It estimates how long it will take to
execute Instruction I, and all I’s
successors, assuming unlimited
parallelism.

E(I) = Execution time for instruction I
         (normally 1 for pipelined

machines)
CP(I) = E(I)  if I is a leaf.

CP(I) = E(I) + Max (CP(Ji)+d(I,Ji))
∈ Succ(I)Ji



247CS 701  Fall 2005
©

Example of Critical Path
Values

block1:
1.  ld   [a],Pr1
2.  ld   [b],Pr2
3.  add  Pr1,Pr2,Pr3
4.  st   Pr3,[d]
5.  cmp  Pr3,0
6.  be   block3

1 2

3

4 5

6

1

2 2

3

5 5

248CS 701  Fall 2005
©

Selecting Instructions to Issue
From the Ready Set (instructions with all
dependencies satisfied, and which will
not stall) use the following priority rules:

1. Instructions in block A and blocks
    equivalent to A have priority over
    other (speculative) blocks.
2. Instructions with the highest D

values have priority.
3. Instructions with the highest CP

values have priority.
These rules imply that we schedule
useful instructions before speculative
ones, instructions on paths with
potentially many stalls over those with
fewer stalls, and instructions on critical
paths over those on non-critical paths.

249CS 701  Fall 2005
©

Example
block1:
1.   ld   [a],Pr1
2.   ld   [b],Pr2
3.   add  Pr1,Pr2,Pr3
4.   st   Pr3,[d]
5.   cmp  Pr3,0
6.   be   block3
block2:
7.   mov  1,Pr4
8.   st   Pr4,[flag]
9.   b    block4
block3:
10.  st   0,[flag]
block4:
11.  ld   [d],Pr5
12.  ld   [g],Pr6
13.  sub  Pr5,Pr6,Pr7
14.  st   Pr7,[f]

1 2

3

4 5

6

0,1

0,2 0,2

0,3

1,5 1,5

8 9
0,2 0,1

7
0,3

10
0,1

11 12

13
0,2

1,4 1,4

14
0,1

250CS 701  Fall 2005
©

We’ll schedule without speculation;
highest D values first, then highest CP
values.

block1:
1.   ld   [a],Pr1
2.   ld   [b],Pr2

1 2

3

4 5

6

0,1

0,2 0,2

0,3

1,5 1,5

8 9
0,2 0,1

7
0,3

10
0,1

11 12

13
0,2

1,4 1,4

14
0,1

12.  ld   [g],Pr6



251CS 701  Fall 2005
©

Next, come Instructions 3 and 4.
block1:
1.   ld   [a],Pr1
2.   ld   [b],Pr2

3

4 5

6

0,1

0,2 0,2

0,3

8 9
0,2 0,1

7
0,3

10
0,1

11

13
0,2

1,4

14
0,1

12.  ld   [g],Pr6
3.   add  Pr1,Pr2,Pr3
4.   st   Pr3,[d]

252CS 701  Fall 2005
©

Now 11 can issue (D=1), followed by 5,
13, 6 and 14. Block B4 is now empty, so
B3 and B4 are scheduled.

There are no stalls. In fact, if we
equivalence Pr3  and Pr5 , Instruction 11
can be removed.

block1:
1.   ld   [a],Pr1
2.   ld   [b],Pr2

5

6

0,1

0,2

8 9
0,2 0,1

7
0,3

10
0,1

11

13
0,2

1,4

14
0,1

12.  ld   [g],Pr6
3.   add  Pr1,Pr2,Pr3
4.   st   Pr3,[d]

5.   cmp  Pr3,0
11.  ld   [d],Pr5

14.  st   Pr7,[f]
block2:
7.   mov  1,Pr4
8.   st   Pr4,[flag]
9.   b    block4
block3:
10.  st   0,[flag]
block4:

13.  sub  Pr5,Pr6,Pr7
6.   be   block3

253CS 701  Fall 2005
©

Hardware Support for Global
Code Motion

We want to be aggressive in
scheduling loads, which incur high
latencies when a cache miss occurs.
In many cases, control and data
dependencies may force us to restrict
how far we may move a critical load.
Consider

p = Lookup(Id);
  ...
if (p != null)

print(p.a);

It may well be that the object
returned by Lookup  is not in the L1
cache. Thus we’d like to schedule the
load generated by p.a  as soon as
possible; ideally right after the
lookup.

254CS 701  Fall 2005
©

But moving the load above the p !=
null  check is clearly unsafe.
A number of modern machine
architectures, including Intel’s
Itanium, have proposed a speculative
load to allow freer code motion when
scheduling.
A speculative load,

ld.s  [adr],%reg

acts like an ordinary load as long as
the load does not force an interrupt.
If it does, the interrupt is suppressed
and a special NaT (not a thing) bit is
set in the register (a hidden 65th bit).
A NaT bit can be propagated through
instructions before being tested.
In some cases (like our table lookup
example), a register containing a NaT
bit may simply not be used because



255CS 701  Fall 2005
©

control doesn’t reach its intended
uses.
However a NaT bit need not indicate
an outright error. A load may force a
TLB (translation lookaside buffer)
fault or a page fault. These interrupts
are probably too costly to do
speculatively, but if we decide the
loaded value is really needed, we will
want to allow them.
A special check instruction, of the
form,

chk.s  %reg,adr

checks whether %reg has its NaT bit
set. If it does, control passes to adr ,
where user-supplied “fixup” code is
placed. This code can redo the load
non-speculatively, allowing necessary
interrupts to occur.

256CS 701  Fall 2005
©

Hardware Support for Data
Speculation

In addition to supporting control
speculation (moving instructions
above conditional branches), it is
useful to have hardware support for
data speculation.
In data speculation, we may move a
load above a store if we believe the
chance of the load and store
conflicting is slim.
Consider a variant of our earlier
lookup example,

p = Lookup(Id);
  ...
q.a = init();
print(p.a);

257CS 701  Fall 2005
©

We’d like to move the load implied by
p.a  above the assignment to q.a . This
allows p to miss in the L1 cache, using
the execution of init()  to cover the
miss latency.
But, we need to be sure that q and p
don’t reference the same object and that
init()  doesn’t indirectly change p.a .
Both possibilities may be remote, but
proving non-interference may be
difficult.
The Intel Itanium provides a special
“advanced load” that supports this sort
of load motion.
The instruction

ld.a  [adr],%reg

loads the contents of memory location
adr  into %reg. It also stores adr  into

258CS 701  Fall 2005
©

special ALAT (Advanced Load Address
Table) hardware.
When a store to address X occurs, an
ALAT entry corresponding to address X is
removed (if one exists).
When we wish to use the contents of
%reg, we execute a

ld.c  [adr],%reg

instruction (a checked load).
If an ALAT entry for adr  is present, this
instruction does nothing; %reg contains
the correct value. If there is no
corresponding ALAT entry, the ld.c
simply acts like an ordinary load.
(Two versions of ld.c  exist; one
preserves an ALAT entry while the other
purges it).



259CS 701  Fall 2005
©

And yes, a speculative load (ld.s ) and
an advanced load (ld.a ) may be
combined to form a speculative
advanced load (ld.sa ).

260CS 701  Fall 2005
©

Speculative Multi-threaded
Processors
The problem of moving a load above a
store that may conflict with it also
appears in multi-threaded processors.
How do we know that two threads don’t
interfere with one another by writing
into locations both use?
Proofs of non-interference can be
difficult or impossible. Rather than
severely restrict what independent
threads can do, researchers have
proposed speculative multi-threaded
processors.
In such processors, one thread is primary,
while all other threads are secondary and
speculative. Using hardware tables to
remember locations read and written, a
secondary thread can commit (make its

261CS 701  Fall 2005
©

updates permanent) only if it hasn’t read
locations the primary thread later wrote
and hasn’t written locations the primary
thread read or wrote. Access conflicts are
automatically detected, and secondary
threads are automatically restarted as
necessary to preserve the illusion of
serial memory accesses.

262CS 701  Fall 2005
©

Reading Assignment
• Read Section 15.5, “Automatic

Instruction Selection,” from Chapter 15.

• Read Pelegri-Llopart and Graham’s paper,
“Optimal Code Generation from
Expression Trees.”

• Read Fraser, Henry and Proebsting’s
paper, “BURG--Fast Optimal Instruction
Selection and Tree Parsing.”



263CS 701  Fall 2005
©

Software Pipelining
Often loop bodies are too small to allow
effective code scheduling. But loop
bodies, being “hot spots,” are exactly
where scheduling is most important.
Consider

void f (int a[],int last) {
  for (p=&a[0];p!=&a[last];p++)
     (*p)++;
}

The body of the loop might be:
L: ld   [%g3],%g2
   nop
   add  %g2,1,%g2
   st   %g2,[%g3]
   add  %g3,4,%g3
   cmp  %g3,%g4
   bne  L
   nop

264CS 701  Fall 2005
©

Scheduling this loop body in isolation is
ineffective—each instruction depends
upon its immediate predecessor.
So we have a loop body that takes 8
cycles to execute 6 “core” instructions.

We could unroll the loop body, but for
how many iterations? What if the loop
ends in the “middle” of an expanded
loop body? Will extra registers be a
problem?

265CS 701  Fall 2005
©

In this case software pipelining offers a
nice solution. We expand the loop body
symbolically, intermixing instructions
from several iterations. Instructions can
overlap, increasing parallelism and
forming a “tighter” loop body:

   ld   [%g3],%g2
   nop
   add  %g2,1,%g2
L: st   %g2,[%g3]
   add  %g3,4,%g3
   ld   [%g3],%g2
   cmp  %g3,%g4
   bne  L
   add  %g2,1,%g2

Now the loop body is ideal—exactly 6
instructions. Also, no extra registers are
needed!
But, we do “overshoot” the end of the
loop a bit, loading one element past the
exit point. (How serious is this?)

266CS 701  Fall 2005
©

Key Insight of Software
Pipelining
Software pipelining exploits the fact
that a loop of the form {A B C} n, where
A, B and C are individual instructions,
and n is the iteration count, is equivalent
to A {B C A} n-1 B C and is also equivalent
to A B {C A B} n-1 C.
Mixing instructions from several
iterations may increase the effectiveness
of code scheduling, and may perhaps
allow for more parallel execution.

Software Pipelining is Hard
In fact, it is NP-complete:

Hsu and Davidson, “Highly concurrent
scalar processing,” 13th ISCA (1986).



267CS 701  Fall 2005
©

The Iteration Interval
We seek to initiate the next iteration
of a loop as soon as possible,
squeezing each iteration of the loop
body into as few machine cycles as
possible.
The general form of a software
pipelined loop is:

Prologue Code

Kernel Code

Epilogue Code

268CS 701  Fall 2005
©

The prologue code “sets up” the main
loop, and the epilogue code “cleans
up” after loop termination. Neither
the prolog nor the epilogue need be
optimized, since they execute only
once.
Optimizing the kernel is key in
software pipelining. The kernel’s
execution time (in cycles) is called
the initiation interval (II); it measures
how quickly the next iteration of a
loop can start.
We want the smallest possible
initiation interval. Determining the
smallest viable II is itself NP-
complete. Because of parallel issue
and execution in superscalar and
multiple issue processors, very small II
values are possible (even less than 1!)


