
263CS 701 Fall 2005
©

Software Pipelining
Often loop bodies are too small to allow
effective code scheduling. But loop
bodies, being “hot spots,” are exactly
where scheduling is most important.
Consider

void f (int a[],int last) {
 for (p=&a[0];p!=&a[last];p++)
 (*p)++;
}

The body of the loop might be:
L: ld [%g3],%g2
 nop
 add %g2,1,%g2
 st %g2,[%g3]
 add %g3,4,%g3
 cmp %g3,%g4
 bne L
 nop

264CS 701 Fall 2005
©

Scheduling this loop body in isolation is
ineffective—each instruction depends
upon its immediate predecessor.
So we have a loop body that takes 8
cycles to execute 6 “core” instructions.

We could unroll the loop body, but for
how many iterations? What if the loop
ends in the “middle” of an expanded
loop body? Will extra registers be a
problem?

265CS 701 Fall 2005
©

In this case software pipelining offers a
nice solution. We expand the loop body
symbolically, intermixing instructions
from several iterations. Instructions can
overlap, increasing parallelism and
forming a “tighter” loop body:

 ld [%g3],%g2
 nop
 add %g2,1,%g2
L: st %g2,[%g3]
 add %g3,4,%g3
 ld [%g3],%g2
 cmp %g3,%g4
 bne L
 add %g2,1,%g2

Now the loop body is ideal—exactly 6
instructions. Also, no extra registers are
needed!
But, we do “overshoot” the end of the
loop a bit, loading one element past the
exit point. (How serious is this?)

266CS 701 Fall 2005
©

Key Insight of Software
Pipelining
Software pipelining exploits the fact
that a loop of the form {A B C} n, where
A, B and C are individual instructions,
and n is the iteration count, is equivalent
to A {B C A} n-1 B C and is also equivalent
to A B {C A B} n-1 C.
Mixing instructions from several
iterations may increase the effectiveness
of code scheduling, and may perhaps
allow for more parallel execution.

Software Pipelining is Hard
In fact, it is NP-complete:

Hsu and Davidson, “Highly concurrent
scalar processing,” 13th ISCA (1986).

267CS 701 Fall 2005
©

The Iteration Interval
We seek to initiate the next iteration
of a loop as soon as possible,
squeezing each iteration of the loop
body into as few machine cycles as
possible.
The general form of a software
pipelined loop is:

Prologue Code

Kernel Code

Epilogue Code

268CS 701 Fall 2005
©

The prologue code “sets up” the main
loop, and the epilogue code “cleans
up” after loop termination. Neither
the prolog nor the epilogue need be
optimized, since they execute only
once.
Optimizing the kernel is key in
software pipelining. The kernel’s
execution time (in cycles) is called
the initiation interval (II); it measures
how quickly the next iteration of a
loop can start.
We want the smallest possible
initiation interval. Determining the
smallest viable II is itself NP-
complete. Because of parallel issue
and execution in superscalar and
multiple issue processors, very small II
values are possible (even less than 1!)

269CS 701 Fall 2005
©

Factors that Limit the Size of
the Initiation Interval

We want the initiation interval to be
as small as possible. Two factors limit
how small the II can become:
• Resource Constraints

• Dependency Constraints

270CS 701 Fall 2005
©

Resource Constraints
A small II normally means that we are
doing steps of several iterations
simultaneously. The number of
registers and functional units (that
execute instructions) can become
limiting factors of the size of II.
For example, if a loop body contains 4
floating point operations, and our
processor can issue and execute no
more than 2 floating point operations
per cycle, then the loop’s II can’t be
less than 2.

271CS 701 Fall 2005
©

Dependency Constraints
A loop body can often contain a loop-
carried dependence. This means one
iteration of a loop depends on values
computed in an earlier iteration. For
example, in

void f (int a[]) {

 for (i=1;i<1000;i++)

 a[i]=(a[i-1]+a[i])/2;

}

there is a loop carried dependence from
the use of a[i-1] to the computation of
a[i] in the previous iteration. This
means the computation of a[i] can’t
begin until the computation of a[i-1]
is completed.
Let’s look at the code that might be
generated for this loop:

272CS 701 Fall 2005
©

f:
mov %o0, %o2 !a in %o2
mov 1, %o1 !i=1 in %o1

L:
sll %o1, 2, %o0 !i*4 in %o0
add %o0, %o2, %g2 !&a[i] in %g2

☛ ld [%g2-4], %g2 !a[i-1] in %g2
ld [%o2+%o0], %g3 !a[i] in %g3

☛ add %g2, %g3, %g2 !a[i-1]+a[i]
☛ srl %g2, 31, %g3 !s=0 or 1=sign
☛ add %g2, %g3, %g2 !a[i-1]+a[i]+s
☛ sra %g2, 1, %g2 !a[i-1]+a[i]/2

add %o1, 1, %o1 !i++
cmp %o1, 999
ble L

☛ st %g2, [%o2+%o0] !store a[i]
retl
nop

The 6 marked instructions form a cyclic
dependency chain from a use of a[i-1]
to its computation (as a[i]) in the
previous cycle. This cycle means that the
loop’s II can never be less than 6.

273CS 701 Fall 2005
©

Modulo Scheduling
There are many approaches to
software pipelining. One of the
simplest, and best known, is modulo
scheduling. Modulo scheduling builds
upon the postpass basic block
schedulers we’ve already studied.
First, we estimate the II of the loop
we will create. How?
We can compute the minimum II
based on resource considerations
(IIres) and the minimum II based on
cyclic loop-carried dependencies
(IIdep). Then max(IIres,IIdep) is a
reasonable estimate of the best
possible II. We’ll try to build a loop
with a kernel size of II. If this fails,
we’ll try II+1, II+2, etc.

274CS 701 Fall 2005
©

In modulo scheduling we’ll schedule
instructions one by one, using the
dependency dag and whatever
heuristic we prefer to choose among
multiple roots.
Now though, if we place an
instruction at cycle c (many
independent instructions may execute
in the same cycle), then we’ll place
additional copies of the instruction at
cycle c+II, c+2*II, etc.
Placement must respect dependency
constraints and resource limits at all
positions. We consider placements
only until a kernel (of size II) forms.
The kernel must begin before cycle s-
1, where s is the size of the loop body
(in instructions). The loop’s
conditional branch is placed after the
kernel is formed.

275CS 701 Fall 2005
©

If we can’t form a kernel of size II
(because of dependency or resource
conflicts), we increase II by 1 and try
again. At worst, we get a kernel equal
in size to the original loop body,
which guarantees that the modulo
scheduler eventually terminates.
Depending on how many iterations
are intermixed in the kernel, the loop
termination condition may need to be
adjusted (since the initial and final
iterations may appear as part of the
loop prologue and epilogue).

276CS 701 Fall 2005
©

Example
Consider the following simple
function which adds an array index to
each element of an array and copies
the results into a second array:
void f (int a[],int b[]) {
 t1 = &a[0];
 t2 = &b[0];

for (i=0;i<1000;i++,t1++,t2++)
 *t1 = *t2 + i;
}

The code for f (compiled as a leaf
procedure) is:

277CS 701 Fall 2005
©

1. f: mov 0, %g3

2. L: ld [%o1], %g2

3. add %g3, %g2, %g4

4. st %g4, [%o0]

5. add %g3, 1, %g3

6. add %o0, 4, %o0

7. cmp %g3, 999

8. ble L

9. add %o1, 4, %o1

10. retl

11. nop

2

3 9

4 5

6 7

Dashed arcs are
anti dependencies.

278CS 701 Fall 2005
©

We’ll software pipeline the loop body,
excluding the conditional branch
(which is placed after the loop kernel
is formed).
This loop body contains 2 loads/
stores, 5 arithmetic and logical
operations (including the compare)
and one conditional branch.
Let’s assume the processor we are
compiling for has 1 load/store unit, 3
arithmetic/logic units, and 1 branch
unit. That means the processor can
(ideally) issue and execute
simultaneously 1 load or store, 3
arithmetic and logic instructions, and
1 branch. Thus its maximum issue
width is 5. (Current superscalars have
roughly this capability.)

279CS 701 Fall 2005
©

Considering resource requirements,
we will need at least two cycles to
process the contents of the loop body.
There are no loop-carried
dependencies.
Thus we will estimate this loop’s best
possible Initiation Interval to be 2.
Since the only instruction that can
stall is the root of the dependency
dag, we’ll schedule using estimated
critical path length, which is just the
node’s height in the tree. Hence we’ll
schedule the nodes in the order:
2,3,4,5,6,7,9.
We’ll schedule all instructions in a
legal execution order (respecting
dependencies), and we’ll try to choose
as many instructions as possible to
execute in the same cycle.

280CS 701 Fall 2005
©

Starting with the root, instruction 2,
we schedule it at cycles 1, 3 (=1+II),
5 (=1+2*II):
cycle instruction
1. ld [%o1], %g2
2.
3. ld [%o1], %g2

4.

5. ld [%o1], %g2

No conflicts so far, since each of the
loads starts an independent iteration.

281CS 701 Fall 2005
©

We’ll schedule instruction 3 next. It
must be placed at cycles 3, 5 and 7
since it uses the result of the load.
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

4.
5. add %g3, %g2, %g4
5. ld [%o1], %g2

6.
7. add %g3, %g2, %g4

Note that in cycles 3 and 5 we use
the current value of %g2 and initiate
a load into %g2.

282CS 701 Fall 2005
©

Instruction 4 is next. It uses the result
of the add we just scheduled, so it is
placed at cycles 4 and 6.
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 4. st %g4, [%o0]
5. add %g3, %g2, %g4
5. ld [%o1], %g2

 6. st %g4, [%o0]
7. add %g3, %g2, %g4

283CS 701 Fall 2005
©

Instruction 5 is next. It is anti
dependent on instruction 3, so we can
place it in the same cycles that 3 uses
(3, 5 and 7).
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %g3, 1, %g3

 4. st %g4, [%o0]
5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %g3, 1, %g3

 6. st %g4, [%o0]
7. add %g3, %g2, %g4

 7. add %g3, 1, %g3

284CS 701 Fall 2005
©

Instruction 6 is next. It is anti
dependent on instruction 4, so we can
place it in the same cycles that 4 uses
(4 and 6).
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %g3, 1, %g3

 4. st %g4, [%o0]

 4. add %o0, 4, %o0
5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %g3, 1, %g3

 6. st %g4, [%o0]

 6. add %o0, 4, %o0
7. add %g3, %g2, %g4

 7. add %g3, 1, %g3

285CS 701 Fall 2005
©

Next we place instruction 7. It uses
the result of instruction 5 (%g3), so it
is placed in the cycles following
instruction 5 (4 and 6).
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %g3, 1, %g3

 4. st %g4, [%o0]

 4. add %o0, 4, %o0

 4. cmp %g3, 999
5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %g3, 1, %g3

 6. st %g4, [%o0]

 6. add %o0, 4, %o0
7. add %g3, %g2, %g4

 7. add %g3, 1, %g3

 7. cmp %g3, 999

286CS 701 Fall 2005
©

Finally we place instruction 9. It is
anti dependent on instruction 2 so it
is placed in the same cycles as
instruction 3 (1, 3 and 5).
cycle instruction
1. ld [%o1], %g2

 1. add %o1, 4, %o1
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %o1, 4, %o1
 3. add %g3, 1, %g3
 4. st %g4, [%o0]
 4. add %o0, 4, %o0
 4. cmp %g3, 999

5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %o1, 4, %o1
 5. add %g3, 1, %g3
 6. st %g4, [%o0]
 6. add %o0, 4, %o0

7. add %g3, %g2, %g4
 7. add %g3, 1, %g3
 7. cmp %g3, 999

287CS 701 Fall 2005
©

We look for a 2 cycles kernel that
contains all 7 instructions of the loop
body that we have scheduled. We also
want a kernel that sets the condition
code (via the cmp) during its first
cycle so that it can be tested during
its second (and final) cycle. Cycles 4
and 5 meet these criteria, and will
form our kernel.
We place the conditional branch just
before the last instruction in cycle 5
(to give the conditional branch a
useful instruction for its delay slot).

288CS 701 Fall 2005
©

We now have:
cycle instruction
1. ld [%o1], %g2

 1. add %o1, 4, %o1
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %o1, 4, %o1
 3. add %g3, 1, %g3
 4. L: st %g4, [%o0]
 4. add %o0, 4, %o0
 4. cmp %g3, 999

5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %o1, 4, %o1
 5. ble L
 5. add %g3, 1, %g3
 6. st %g4, [%o0]
 6. add %o0, 4, %o0

7. add %g3, %g2, %g4
 7. add %g3, 1, %g3
 7. cmp %g3, 999

289CS 701 Fall 2005
©

A couple of final issues must be dealt
with:
• Does the iteration count need to be

changed?
In this case no, since the final valid
value of i , 999, is used to compute
%g4 in cycle 5, before the loop exits.

• What instructions do we keep as the
loop’s epilogue?
None! Instructions past the kernel
aren’t needed since they are part of
future iterations (past i==999)which
aren’t needed or wanted.

• Note that b[1000] and b[1001] are
“touched” even though they are never
used. This is probably OK as long as
arrays aren’t placed at the very end of
a page or segment.

290CS 701 Fall 2005
©

Our final loop is:
cycle instruction
1. ld [%o1], %g2 !N 0

 1. add %o1, 4, %o1 !N 0

3. add %g3, %g2, %g4 !N 0

3. ld [%o1], %g2 !N 1

 3. add %o1, 4, %o1 !N 1

 3. add %g3, 1, %g3 !N 0

 4. L: st %g4, [%o0] !N 0

 4. add %o0, 4, %o0 !N 0

 4. cmp %g3, 999 !N 0

5. add %g3, %g2, %g4 !N 1

5. ld [%o1], %g2 !N 2

 5. add %o1, 4, %o1 !N 2

 5. ble L !N 0

 5. add %g3, 1, %g3 !N 1

This is very efficient code—we use the
full parallelism of the processor,
executing 5 instructions in cycle 5
and 8 instructions in just 2 cycles. All
resource limitations are respected.

291CS 701 Fall 2005
©

False Dependencies & Loop
Unrolling

A limiting factor in how “tightly” we
can software pipeline a loop is reuse
of registers and the false
dependencies reuse induces.
Consider the following simple
function that copies array elements:
void f (int a[],int b[], int lim) {
 for (i=0;i<lim;i++)
 a[i]=b[i];
}

The loop that is generated takes 3
cycles:
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
3. st %g2, [%g3+%o0]
3. bne L

 3. add %g3, 4, %g3

292CS 701 Fall 2005
©

We’d like to tighten the iteration
interval to 2 or less. One cycle is
unlikely, since doing a load and a
store in the same cycle is problematic
(due to a possible dependence
through memory).
If we try to use modulo scheduling,
we can’t put a second copy of the
load in cycle 2 because it would
overwrite the contents of the first
load. A load in cycle 3 will clash with
the store.
The solution is to unroll the loop into
two copies, using different registers
to hold the contents of the load and
the current offset into the arrays.
The use of a “count down” register to
test for loop termination is helpful,

293CS 701 Fall 2005
©

since it allows an easy exit from the
middle of the loop.
With the renaming of the registers
used in the two expanded iterations,
scheduling to “tighten” the loop is
effective.
After expansion we have:
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
3. st %g2, [%g3+%o0]
3. beq L2

 3. add %g3, 4, %g4
4. ld [%g4+%o1], %g5

 4. addcc %o2, -1, %o2
6. st %g5, [%g4+%o0]
6. bne L

 6. add %g4, 4, %g3
 L2:

We still have 3 cycles per iteration,
because we haven’t scheduled yet.

294CS 701 Fall 2005
©

Now we can move the increment of
%g3 (into %g4) above other uses of
%g3. Moreover, we can move the load
into %g5 above the store from %g2 (if
the load and store are independent):
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
 1. add %g3, 4, %g4

2. ld [%g4+%o1], %g5
3. st %g2, [%g3+%o0]
3. beq L2
3. addcc %o2, -1, %o2
4. st %g5, [%g4+%o0]
4. bne L

 4. add %g4, 4, %g3
 L2:

We can normally test whether
%g4+%o1 and %g3+%o0 can be equal
at compile-time, by looking at the
actual array parameters. (Can &a[0]
== &b[1] ?)

