
291CS 701 Fall 2005
©

False Dependencies & Loop
Unrolling

A limiting factor in how “tightly” we
can software pipeline a loop is reuse
of registers and the false
dependencies reuse induces.
Consider the following simple
function that copies array elements:
void f (int a[],int b[], int lim) {
 for (i=0;i<lim;i++)
 a[i]=b[i];
}

The loop that is generated takes 3
cycles:
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
3. st %g2, [%g3+%o0]
3. bne L

 3. add %g3, 4, %g3

292CS 701 Fall 2005
©

We’d like to tighten the iteration
interval to 2 or less. One cycle is
unlikely, since doing a load and a
store in the same cycle is problematic
(due to a possible dependence
through memory).
If we try to use modulo scheduling,
we can’t put a second copy of the
load in cycle 2 because it would
overwrite the contents of the first
load. A load in cycle 3 will clash with
the store.
The solution is to unroll the loop into
two copies, using different registers
to hold the contents of the load and
the current offset into the arrays.
The use of a “count down” register to
test for loop termination is helpful,

293CS 701 Fall 2005
©

since it allows an easy exit from the
middle of the loop.
With the renaming of the registers
used in the two expanded iterations,
scheduling to “tighten” the loop is
effective.
After expansion we have:
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
3. st %g2, [%g3+%o0]
3. beq L2

 3. add %g3, 4, %g4
4. ld [%g4+%o1], %g5

 4. addcc %o2, -1, %o2
6. st %g5, [%g4+%o0]
6. bne L

 6. add %g4, 4, %g3
 L2:

We still have 3 cycles per iteration,
because we haven’t scheduled yet.

294CS 701 Fall 2005
©

Now we can move the increment of
%g3 (into %g4) above other uses of
%g3. Moreover, we can move the load
into %g5 above the store from %g2 (if
the load and store are independent):
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
 1. add %g3, 4, %g4

2. ld [%g4+%o1], %g5
3. st %g2, [%g3+%o0]
3. beq L2
3. addcc %o2, -1, %o2
4. st %g5, [%g4+%o0]
4. bne L

 4. add %g4, 4, %g3
 L2:

We can normally test whether
%g4+%o1 and %g3+%o0 can be equal
at compile-time, by looking at the
actual array parameters. (Can &a[0]
== &b[1] ?)

