
295CS 701 Fall 2005
©

Automatic Instruction
Selection

Besides register allocation and code
scheduling, a code generator must
also do Instruction Selection.

For CISC (Complex Instruction Set
Computer) Architectures, like the
Intel x86, DEC Vax, and many special
purpose processors (like Digital Signal
Processors), instruction selection is
often challenging because so many
choices exist.
In the Vax, for example, one, two and
three address instructions exist. Each
address may be a register, memory
location (with or without indexing),
or an immediate operand.

296CS 701 Fall 2005
©

For RISC (Reduced Instruction Set
Computer) Processors, instruction
formats and addressing modes are far
more limited.
Still, it is necessary to handle
immediate operands, commutative
operands and special case null
operands (add of 0 or multiply of 1).

Moreover, automatic instruction
selection supports automatic
retargeting of a compiler to a new or
extended instruction set.

297CS 701 Fall 2005
©

Tree-Structured Intermediate
Representations

For purposes of automatic code
generation, it is convenient to
translate a source program into a
Low-level, Tree-Structured IR.
This representation exposes
translation details (how locals are
accessed, how conditionals are
translated, etc.) without assuming a
particular instruction set.

In a low-level, tree-structured IR,
leaves are registers or bit-patterns
and internal nodes are machine-level
primitives, like load, store, add, etc.

298CS 701 Fall 2005
©

Example
Let’s look at how
a = b - 1 ;

is represented, where a is a global
integer variable and b is a local
(frame allocated) integer variable.

=

aadr -

* IntLiteral1

+

%fp boffset

299CS 701 Fall 2005
©

Representation of Instructions
Individual instructions can be
represented as trees, rooted by the
operation they implement.
For example:

*

Adr
Reg →

This is an
instruction that
loads a register with
the value at an
absolute address.

Reg →
+

Reg Reg
This is an instruction that adds the
contents of two registers and stores the
sum into a third register.

300CS 701 Fall 2005
©

Using the above pair of instruction
definitions, we can repeatedly match
instructions in the following program
IR:

+

+ *

* *
aadr badr

cadr

+

+ *

*

badr

cadr

⇒

Reg

+ *
cadrReg

+

Reg

*
cadr

+

Reg

+

Reg Reg
Reg

⇒

⇒ ⇒

⇒

301CS 701 Fall 2005
©

Each match of an instruction pattern
can have the side-effect of
generating an instruction:
 ld [a],%R1
 ld [b],%R2
 add %R1,%R2,%R3
 ld [c],%R4
 add %R3,%R4,%R5

Registers can be allocated on-the-fly
as Instructions are generated or
instructions can be generated using
pseudo-registers, with a subsequent
register allocation phase.

Using this view of instruction
selection, choosing instructions
involves finding a cover for an IR tree
using Instruction Patterns.
Any cover is a valid translation.

302CS 701 Fall 2005
©

Tree Parsing vs.
String Parsing

This process of selecting instructions
by matching instruction patterns is
very similar to how strings are parsed
using Context-free Grammars.
We repeatedly identify a sub-tree
that corresponds to an instruction,
and simplify the IR-tree by replacing
the instruction sub-tree with a
nonterminal symbol. The process is
repeated until the IR-tree is reduced
to a single nonterminal.
The theory of reducing an IR-tree
using rewrite rules has been studied
as part of BURS (Bottom-Up Rewrite
Systems) Theory by Pelegri-Llopart
and Graham.

303CS 701 Fall 2005
©

Automatic Instruction
Selection Tools

Just as tools like Yacc and Bison
automatically generate a string parser
from a specification of a Context-free
Grammar, there exist tools that will
automatically generate a tree-parser
from a specification of tree
productions.

Two such tools are BURG (Bottom Up
Rewrite Generator) and IBURG
(Interpreted BURG). Both
automatically generate parsers for
tree grammars using BURS theory.

304CS 701 Fall 2005
©

Least-Cost Tree Parsing
BURG (and IBURG) guarantee to find
a cover for an input tree (if one
exists).
But tree grammars are usually very
ambiguous.
Why?—Because there is usually more
than one code sequence that can
correctly implement a given IR-tree.
To deal with ambiguity, BURG and
IBURG allow each instruction pattern
(tree production) to have a cost.
This cost is typically the size or
execution time for the corresponding
target-machine instructions.

305CS 701 Fall 2005
©

Using costs, BURG (and IBURG) not
only guarantee to find a cover, but
also a least-cost cover.

This means that when a generated
tree-parser is used to cover (and
thereby translate) an IR-Tree, the best
possible code sequence is guaranteed.

If more than one least-cost cover
exists, an arbitrary choice is made.

306CS 701 Fall 2005
©

Using BURG to Specify
Instruction Selection

We’ll need a tree grammar to specify
possible partial covers of a tree.
For simplicity, BURG requires that all
tree productions be of the form

A → b
 (where b is a single terminal symbol)
 or
A → Op(B,C, ...)
 (where Op is a terminal that is a

subtree root and B,C, ... are non-
terminals)

A → Op(B,C, ...)
denotes

Op

B C ...

307CS 701 Fall 2005
©

All tree grammars can be put into this
form by adding new nonterminals and
productions as needed.

We must specify terminal symbols
(leaves and operators in the IR-Tree)
and nonterminals that are used in
tree productions.

308CS 701 Fall 2005
©

Example
A subset of a SPARC instruction
selector.

Terminals
Leaf Nodes

int32 (32 bit integer)
s13 (13 bit signed integer)
r (0-31, a register name)

Operator Nodes
* (unary indirection)
- (binary minus)
+ (binary addition)
= (binary assignment)

309CS 701 Fall 2005
©

Nonterminals
UInt (32 bit unsigned integer)
Reg (Loaded register value)
Imm (Immediate operand)
Adr (Address expression)
Void (Null value)

310CS 701 Fall 2005
©

Productions

Rule
Production Cost SPARC Code

R0 UInt → Int32 0

R1 Reg → r 0

R2 Adr → r 0

R3 0

R4 Imm → s13 0

R5 Reg → s13 1 mov s13,Reg

R6 Reg → int32 2 sethi
%hi(int32),%g1

or %g1,
%lo(int32),Reg

R7 1 sub Reg,Reg,Reg

Adr →
+

Reg Imm

Reg →
−

Reg Reg

311CS 701 Fall 2005
©

R8 1 sub Reg,Imm,Reg

R9 1 ld [Adr],Reg

R10 2 sethi
%hi(UInt),%g1

st Reg,
[%g1+%lo(Uint)]

Rule
Production Cost SPARC Code

Reg →
−

Reg Imm

Reg →
∗

Adr

Void →
=

UInt Reg

312CS 701 Fall 2005
©

Reading Assignment
• Read “Optimal Spilling for CISC

Machines with Few Registers,” by Appel
and George. (Linked from the class Web
page.)

313CS 701 Fall 2005
©

Example
Let’s look at instruction selection for

a = b - 1;

where a is a global int, accessed with
a 32 bit address and b is a local int,
accessed as an offset from the frame
pointer.

=

int32 -

* s13

+

r s13

314CS 701 Fall 2005
©

We match tree nodes bottom-up.
Each node is labeled with the
nonterminals it can be reduced to, the
production used to produce the
nonterminal, and the cost to generate
the node (and its children) from the
nonterminal.
We match leaves first:

=

int32 -

* s13

+

r s13
Imm:R4:0
Reg:R5:1

Imm:R4:0
Reg:R5:1

UInt:R0:0
Reg:R6:2

Reg:R1:0
Adr:R2:0

315CS 701 Fall 2005
©

We now work upward, considering
operators whose children have been
labeled. Again, if an operator can be
generated by a nonterminal, we mark
the operator with the nonterminal,
the production used to generate the
operator, and the total cost (including
the cost to generate all children).
If a nonterminal can generate the
operator using more than one
production, the least-cost derivation
is chosen.
When we reach the root, the
nonterminal with the lowest overall
cost is used to generate the tree.

316CS 701 Fall 2005
©

=

int32 -

* s13

+

r s13
Imm:R4:0
Reg:R5:1

Imm:R4:0
Reg:R5:1

UInt:R0:0
Reg:R6:2

Reg:R1:0
Adr:R2:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4

317CS 701 Fall 2005
©

Note that once we know the
production used to generate the root
of the tree, we know the productions
used to generate each subtree too:

=

int32 -

* s13

+

r s13
Imm:R4:0

Imm:R4:0

UInt:R0:0

Reg:R1:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4

318CS 701 Fall 2005
©

We generate code by doing a depth-
first traversal, generating code for a
production after all the production’s
children have been processed.
We need to do register allocation too;
for our example, a simple on-the-fly
generator will suffice.

➊ ld [%fp+b],%l0
➋ sub %l0,1,%l0
➌ sethi %hi(a),%g1
 st %l0,[%g1+%lo(a)]

=

int32 -

* s13

+

r s13
Imm:R4:0

Imm:R4:0

UInt:R0:0

Reg:R1:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4

➊

➋

➌

319CS 701 Fall 2005
©

Had we translated a slightly
difference expression,

a = b - 1000000;

we would automatically get a
different code sequence (because
1000000 is an int32 rather than an
s13):
 ld [%fp+b],%l0
 sethi %hi(1000000),%g1
 or %g1,%lo(1000000),%l1
 sub %l0,%l1,%l0
 sethi %hi(a),%g1
 st %l0,[%g1+%lo(a)]

320CS 701 Fall 2005
©

Adding New Rules
Since instruction selectors can be
automatically generated, it’s easy to
add “extra” rules that handle
optimizations or special cases.
For example, we might add the
following to handle addition of a left
immediate operand or subtraction of
0 from a register:

Rule
Production Cost SPARC Code

R11 1 add Reg,Imm,Reg

R12 0

Reg →
+

Imm Reg

Reg →
−

Reg Zero

321CS 701 Fall 2005
©

Improving the Speed of
Instruction Selection

As we have presented it, instruction
selection looks rather slow—for each
node in the IR tree, we must match
productions, compare costs, and
select least-cost productions.
Since compilers routinely generate
program with tens or hundreds of
thousands of instructions, doing a lot
of computation to select one
instruction (even if it’s the best
instruction) could be too slow.
Fortunately, this need not be the case.
Instruction selection using BURS can
be made very fast.

322CS 701 Fall 2005
©

Adding States to BURG
We can precompute a set of states
that represent possible labelings on IR
tree nodes. A table of node names
and subtree states then is used to
select a node’s state. Thus labeling
becomes nothing more than repeated
table lookup.

For example, we might create a state
s0 that corresponds to the labeling
{Reg:R1:0, Adr:R2:0}.
A state selection function, label,
defines label(r) = s0. That is,
whenever r is matched as a leaf, it is
to be labeled with s0.
If a node is an operator, label uses the
name of the operator and the labeling

323CS 701 Fall 2005
©

assigned to its children to choose the
operator’s label. For example,

label(+,s0,s1)=s2
says that a + with children labeled as
s0 and s1 is to be labeled as s2.
In theory, that’s all there is to
building a fast instruction selector.
We generate possible labelings,
encode them as states, and table all
combinations of labelings.
But,
how do we know the set of possible
labelings is even finite?
In fact, it isn’t!

324CS 701 Fall 2005
©

Normalizing Costs
It is possible to generate states that
are identical except for their costs.
For example, we might have
 s1 = {Reg:R1:0, Adr:R2:0},
 s2 = {Reg:R1:1, Adr:R2:1},
 s3 = {Reg:R1:2, Adr:R2:2}, etc.

Here an important insight is needed—
the absolute costs included in states
aren’t really essential. Rather relative
costs are what is important. In s1, s2,
and s3, Reg and Adr have the same
cost. Hence the same decision in
choosing between Reg and Adr will be
made in all three states.

325CS 701 Fall 2005
©

We can limit the number of states
needed by normalizing costs within
states so that the lowest cost choice
is always 0, and other costs are
differences (deltas) from the lowest
cost choice.
This observation keeps costs bounded
within states (except for pathologic
cases).
Using additional techniques to
further reduce the number of states
needed, and the time needed to
generate them, fast and compact
BURS instruction selectors are
achievable. See
“Simple and Efficient BURS Table
Generation,” T. Proebsting, 1992 PLDI
Conference.

326CS 701 Fall 2005
©

Example
State Meaning
s0 {Reg:R1:0, Adr:R2:0}
s1 {Imm:R4:0, Reg:R5:1}
s2 {adr:R3:0}
s3 {Reg:R9:0}
s4 {UInt:R0:0}
s5 {Reg:R8:0}
s6 {Void:R10:0}
s7 {Reg:R7:0}

Node Left Child Right Child Result
r s0
s13 s1
int32 s4
+ s0 s1 s2
* s2 s3
- s3 s1 s5
- s1 s3 s7
= s4 s5 s6

327CS 701 Fall 2005
©

We start by looking up the state
assigned to each leaf. We then work
upward, choosing the state of a
parent based on the parent’s kind and
the states assigned to the children.
These are all table lookups, and hence
very fast.
At the root, we select the
nonterminal and production based on
the state assigned to the root (any
entry with 0 cost). Knowing the
production used at the root tells us
the nonterminal used at each child.
Each state has only one entry per
nonterminal, so knowing a node’s
state and the nonterminal used to
generate it immediately tells us the
production used. Hence identifying
the production used for each node is
again very fast.

328CS 701 Fall 2005
©

Step 1 (Label leaves with states):

Step 2 (Propagate states upward):

=

int32 -

* s13

+

r s13

s1

s0 s1

s4

=

int32 -

* s13

+

r s13

s1

s0 s1

s4

s2

s3

s5

s6

329CS 701 Fall 2005
©

Step 3 (Choose production used at
root): R10.
Step 4 (Propagate productions used
downward to children):

=

int32 -

* s13

+

r s13

R4

R1 R4

R0

R3

R9

R8

R10

