
330CS 701 Fall 2005
©

Code Generation for x86
Machines

The x86 presents several special
difficulties when generating code.
• There are only 8 architecturally

visible registers, and only 6 of these
are allocatable. Deciding what values
to keep in registers, and for how long,
is a difficult, but crucial, decision.

• Operands may be addressed directly
from memory in some instructions.
Such instructions avoid using a
register, but are longer and add to I-
cache pressure.

331CS 701 Fall 2005
©

In “Optimal Spilling for CISC
Machines with Few Registers,” Appel
and George address both of these
difficulties.
They use Integer Programming
techniques to directly and optimally
solve the crucial problem of deciding
which live ranges are to be register-
resident at each program point.
Stores and loads are automatically
added to split long live ranges.
Then a variant of Chaitin-style
register allocation is used to assign
registers to live ranges chosen to be
register-resident.
The presentation of this paper, at the
2001 PLDI Conference, is at
www.cs.wisc.edu/~fischer/
cs701/cisc.spilling.pdf

332CS 701 Fall 2005
©

Reading Assignment
• Read pages 1-30 of “Automatic Program

Optimization,” by Ron Cytron.
(Linked from the class Web page.)

333CS 701 Fall 2005
©

Optimistic Coalescing
Given R allocatable registers, Appel
and George guarantee that no more
than R live ranges are marked as
register resident.
This doesn’t always guarantee that an
R coloring is possible.
Consider the following program
fragment:
x=0;

while (...) {

 y = x+1;

 print(x);

 z = y+1;

 print(y);

 x = z+1;

 print(z);

}

334CS 701 Fall 2005
©

At any given point in the loop body
only 2 variables are live, but 3
registers are needed (x interferes with
y, y interferes with z and z interferes
with x).
We know that we have enough
registers to handle all live ranges
marked as register-resident, but we
may need to “shuffle” register
allocations at certain points.
Thus at one point x might be
allocated R1 and at some other point
it might be placed in R2. Such
shuffling implies register to register
copies, so we’d like to minimize their
added cost.

335CS 701 Fall 2005
©

Appel and George suggest allowing
changes in register assignments
between program points. This is done
by creating multiple variable names
for a live range (x1, x2, x3, ...), one for
each program point. Variables are
connected by assignments between
points. Using coalescing, it is
expected that most of the
assignments will be optimized away.

Using our earlier example, we have
the following code with each variable
expanded into 3 segments (one for
each assignment). Copies of dead
variables are removed to simplify the
example:

336CS 701 Fall 2005
©

x3=0;

while (...) {
 x 1 = x 3;

 y 1 = x 1+1;

 print(x 1);

 y 2 = y 1;

 z 2 = y 2+1;

 print(y 2);

 z 3 = z 2;

 x 3 = z 3+1;

 print(z 3);

}

Now a 2 coloring is possible:
x1: R1, y1: R2
z2: R1, y2: R2
z3: R1, x3: R2
(and only x1 = x3 is retained).

337CS 701 Fall 2005
©

Appel and George found that iterated
coalescing wasn’t effective (too many
copies, most of which are useless).
Instead they recommend Optimistic
Coalescing. The idea is to first do
Chaitin-style reckless coalescing of all
copies, even if colorability is impaired.
Then we do graph coloring register
allocation, using the cost of copies as
the “spill cost.” As we select colors, a
coalesced node that can’t be colored
is simply split back to the original
source and target variables. Since we
always limit the number of live ranges
to the number of colors, we know the
live ranges must be colorable (with
register to register copies sometimes
needed).

338CS 701 Fall 2005
©

Using our earlier example, we initially
merge x1 and x3, y1 and y2, z2 and
z3. We already know this can’t be
colored with two registers. All three
pairs have the same costs, so we
arbitrarily stack x1-x3, then y1-y2

and finally z2-z3.
When we unstack, z2-z3 gets R1, and
y1-y2 gets R2. x1-x3 must be split
back into x1 and x3. x1 interferes
with y1-y2 so it gets R1. x3 interferes
with z2-z3 so it gets R2, and coloring
is done.

x1: R1, y1: R2
z2: R1, y2: R2
z3: R1, x3: R2

339CS 701 Fall 2005
©

Data Flow Frameworks
• Data Flow Graph:

Nodes of the graph are basic blocks or
individual instructions.
Arcs represent flow of control.
Forward Analysis:

Information flow is the same
direction as control flow.

Backward Analysis:
Information flow is the opposite
direction as control flow.

Bi-directional Analysis:
Information flow is in both
directions. (Not too common.)

340CS 701 Fall 2005
©

• Meet Lattice
Represents solution space for the data
flow analysis.

• Meet operation
(And, Or, Union, Intersection, etc.)
Combines solutions from predecessors
or successors in the control flow
graph.

⊥

T

.

341CS 701 Fall 2005
©

• Transfer Function
Maps a solution at the top of a node
to a solution at the end of the node
(forward flow)
or
Maps a solution at the end of a node
to a solution at the top of the node
(backward flow).

342CS 701 Fall 2005
©

Example: Available Expressions
This data flow analysis determines
whether an expression that has been
previously computed may be reused.

Available expression analysis is a
forward flow problem—computed
expression values flow forward to
points of possible reuse.

The best solution is True—the
expression may be reused.

The worst solution is False—the
expression may not be reused.

343CS 701 Fall 2005
©

The Meet Lattice is:

As initial values, at the top of the
start node, nothing is available.
Hence, for a given expression,
AvailIn(b0) = F

We choose an expression, and
consider all the variables that
contribute to its evaluation.
Thus for e1=a+b-c, a, b and c are e1’s
operands.

T (Expression is Available)

F (Expression is Not Available)

344CS 701 Fall 2005
©

The transfer function for e1 in block b
is defined as:
If e1 is computed in b after any

assignments to e1’s operands in b
Then AvailOut(b) = T
Elsif any of e1’s operands are changed
 after the last computation of e1 or
 e1’s operands are changed without
 any computation of e1
Then AvailOut(b) = F
Else AvailOut(b) = AvailIn(b)

The meet operation (to combine
solutions) is:

 AvailIn(b) = AND
p ∈ Pred(b)

 AvailOut(p)

