
339CS 701 Fall 2005
©

Data Flow Frameworks
• Data Flow Graph:

Nodes of the graph are basic blocks or
individual instructions.
Arcs represent flow of control.
Forward Analysis:

Information flow is the same
direction as control flow.

Backward Analysis:
Information flow is the opposite
direction as control flow.

Bi-directional Analysis:
Information flow is in both
directions. (Not too common.)

340CS 701 Fall 2005
©

• Meet Lattice
Represents solution space for the data
flow analysis.

• Meet operation
(And, Or, Union, Intersection, etc.)
Combines solutions from predecessors
or successors in the control flow
graph.

⊥

T

.

341CS 701 Fall 2005
©

• Transfer Function
Maps a solution at the top of a node
to a solution at the end of the node
(forward flow)
or
Maps a solution at the end of a node
to a solution at the top of the node
(backward flow).

342CS 701 Fall 2005
©

Example: Available Expressions
This data flow analysis determines
whether an expression that has been
previously computed may be reused.

Available expression analysis is a
forward flow problem—computed
expression values flow forward to
points of possible reuse.

The best solution is True—the
expression may be reused.

The worst solution is False—the
expression may not be reused.

343CS 701 Fall 2005
©

The Meet Lattice is:

As initial values, at the top of the
start node, nothing is available.
Hence, for a given expression,
AvailIn(b0) = F

We choose an expression, and
consider all the variables that
contribute to its evaluation.
Thus for e1=a+b-c, a, b and c are e1’s
operands.

T (Expression is Available)

F (Expression is Not Available)

344CS 701 Fall 2005
©

The transfer function for e1 in block b
is defined as:
If e1 is computed in b after any

assignments to e1’s operands in b
Then AvailOut(b) = T
Elsif any of e1’s operands are changed
 after the last computation of e1 or
 e1’s operands are changed without
 any computation of e1
Then AvailOut(b) = F
Else AvailOut(b) = AvailIn(b)

The meet operation (to combine
solutions) is:

 AvailIn(b) = AND
p ∈ Pred(b)

 AvailOut(p)

345CS 701 Fall 2005
©

Example: e1=v+w

v=9 y=v+w

w=5

x=v+w

z=v+w

v=2stop

F

F

F

F

T

T

T

F

346CS 701 Fall 2005
©

Circularities Require Care
Since data flow values can depend on
themselves (because of loops), care is
required in assigning initial “guesses”
to unknown values. Consider

If the flow value on the loop
backedge is initially set to false, it
can never become true. (Why?)
Instead we should use True, the
identity for the AND operation.

z=v+w

T

T

347CS 701 Fall 2005
©

v=9 y=v+w

w=5

x=v+w

z=v+w

v=2stop

F

F

F

F

T

T

T

F

F F

F

F

T

T
T

T T

F

348CS 701 Fall 2005
©

Very Busy Expressions
This is an interesting variant of
available expression analysis.
An expression is very busy at a point if
it is guaranteed that the expression
will be computed at some time in the
future.
Thus starting at the point in question,
the expression must be reached
before its value changes.

Very busy expression analysis is a
backward flow analysis, since it
propagates information about future
evaluations backward to “earlier”
points in the computation.

349CS 701 Fall 2005
©

The meet lattice is:

As initial values, at the end of all exit
nodes, nothing is very busy. Hence,
for a given expression,
VeryBusyOut(blast) = F

T (Expression is Very Busy)

F (Expression is Not Very Busy)

350CS 701 Fall 2005
©

The transfer function for e1 in block b
is defined as:
If e1 is computed in b before any of

its operands
Then VeryBusyIn(b) = T
Elsif any of e1’s operands are changed
 before e1 is computed
 Then VeryBusyIn(b) = F
Else VeryBusyIn(b) = VeryBusyOut(b)

The meet operation (to combine
solutions) is:

 VeryBusyOut(b) = AND
s ∈ Succ(b)

VeryBusyIn(s)

351CS 701 Fall 2005
©

Example: e1=v+w

stop

v=2

w=5

v=3 x=v+w

u=v+w

F

F

F

F

T

T

352CS 701 Fall 2005
©

stop

v=2

w=5

v=3 x=v+w

u=v+w

F

F

F

F

T

T

F
F

F
F

T

T

T

F

Move v+w
here?

Or here?

353CS 701 Fall 2005
©

Identifying Identical
Expressions

We can hash expressions, based on
hash values assigned to operands and
operators. This makes recognizing
potentially redundant expressions
straightforward.
For example, if H(a) = 10, H(b) = 21
and H(+) = 5, then (using a simple
product hash),
H(a+b) = 10×21×5 Mod TableSize

354CS 701 Fall 2005
©

Effects of Aliasing and Calls
When looking for assignments to
operands, we must consider the
effects of pointers, formal parameters
and calls.
An assignment through a pointer
(e.g, *p = val) kills all expressions
dependent on variables p might point
too. Similarly, an assignment to a
formal parameter kills all expressions
dependent on variables the formal
might be bound to.
A call kills all expressions dependent
on a variable changeable during the
call.
Lacking careful alias analysis,
pointers, formal parameters and calls
can kill all (or most) expressions.

355CS 701 Fall 2005
©

Very Busy Expressions and
Loop Invariants

Very busy expressions are ideal
candidates for invariant loop motion.
If an expression, invariant in a loop, is
also very busy, we know it must be
used in the future, and hence
evaluation outside the loop must be
worthwhile.

356CS 701 Fall 2005
©

for (...) {

if (...)

 a=b+c;

else a=d+c;}

for (...) {

if (a>b+c)

 x=1;

else x=0;}

t=b+c t=b+c

a=b+c a=d+c

a>b+c

T F

F

F

F T

b+c is not very busy
at loop entrance

b+c is very busy
at loop entrance

357CS 701 Fall 2005
©

Reaching Definitions
We have seen reaching definition
analysis formulated as a set-valued
problem. It can also be formulated on
a per-definition basis.
That is, we ask “What blocks does a
particular definition to v reach?”
This is a boolean-valued, forward
flow data flow problem.

358CS 701 Fall 2005
©

Initially, DefIn(b0) = false.

For basic block b:
DefOut(b) =
 If the definition being analyzed is
 the last definition to v in b
 Then True
Elsif any other definition to v occurs

 in b
 Then False
 Else DefIn(b)
The meet operation (to combine
solutions) is:

 DefIn(b) =

To get all reaching definition, we do a
series of single definition analyses.

OR
p ∈ Pred(b)

 DefOut(p)

359CS 701 Fall 2005
©

Live Variable Analysis
This is a boolean-valued, backward
flow data flow problem.
Initially, LiveOut(blast) = false.

For basic block b:
LiveIn(b) =
 If the variable is used before it is
 defined in b
 Then True
 Elsif it is defined before it is used
 in b
 Then False
 Else LiveOut(b)
The meet operation (to combine
solutions) is:

 LiveOut(b) = OR
s ∈ Succ(b)

 LiveIn(s)

360CS 701 Fall 2005
©

Bit Vectoring Data Flow
Problems

The four data flow problems we have
just reviewed all fit within a single
framework.
Their solution values are Booleans
(bits).
The meet operation is And or OR.
The transfer function is of the general
form
 Out(b) = (In(b) - Killb) U Genb

or
 In(b) = (Out(b) - Killb) U Genb

where Killb is true if a value is “killed”
within b and Genb is true if a value is
“generated” within b.

361CS 701 Fall 2005
©

In Boolean terms:
Out(b) = (In(b) AND Not Killb) OR Genb

or
In(b) = (Out(b) AND Not Killb) OR Genb

An advantage of a bit vectoring data
flow problem is that we can do a series
of data flow problems “in parallel” using
a bit vector.

Hence using ordinary word-level ANDs,
ORs, and NOTs, we can solve 32 (or 64)
problems simultaneously.

362CS 701 Fall 2005
©

Example
 Do live variable analysis for u and v,
using a 2 bit vector:

We expect no variable to be live at
the start of b0. (Why?)

v=1

u=0

a=u v=2

print(u,v)

Gen=0,0
Kill=0,1

Gen=0,0

Gen=1,0 Gen=0,0

Gen=1,1

Kill=1,0

Kill=0,0 Kill=0,1

Kill=0,1

Live=0,0

Live=0,1

Live=1,1 Live=1,0

Live=1,1

363CS 701 Fall 2005
©

Reading Assignment
• Read pages 31-62 of “Automatic

Program Optimization,” by Ron Cytron.
(Linked from the class Web page.)

364CS 701 Fall 2005
©

Depth-First Spanning Trees
Sometimes we want to “cover” the
nodes of a control flow graph with an
acyclic structure.
This allows us to visit nodes once,
without worrying about cycles or
infinite loops.
Also, a careful visitation order can
approximate forward control flow
(very useful in solving forward data
flow problems).
A Depth-First Spanning Tree (DFST) is
a tree structure that covers the nodes
of a control flow graph, with the start
node serving as root of the DFST.

365CS 701 Fall 2005
©

Building a DFST
We will visit CFG nodes in depth-first
order, keeping arcs if the visited node
hasn’t be reached before.
To create a DFST, T, from a CFG, G:

1. T ← empty tree
2. Mark all nodes in G as “unvisited.”
3. Call DF(start node)

DF (node) {
1. Mark node as visited.
2. For each successor, s, of node in G:

If s is unvisited
 (a) Add node → s to T
 (b) Call DF(s)

366CS 701 Fall 2005
©

Example
A

B

C

D

E F

G

H

I J

Visit order is A, B, C, D, E, G, H, I, J, F

367CS 701 Fall 2005
©

The DFST is

A

B

C

D

E F

G

H

I J

368CS 701 Fall 2005
©

Categorizing Arcs using a
DFST

Arcs in a CFG can be categorized by
examining the corresponding DFST.
An arc A→B in a CFG is
(a) An Advancing Edge if B is a proper
 descendent of A in the DFST.
(b) A Retreating Edge if B is an
 ancestor of A in the DFST.
 (This includes the A→A case.)
(c) A Cross Edge if B is neither a
 descendent nor an ancestor of A
 in the DFST.

369CS 701 Fall 2005
©

Example
A

B

C

D

E F

G

H

I J

a
a

a

a

a a

a

a

a a

r

r

r

r

c

