
355CS 701 Fall 2005
©

Very Busy Expressions and
Loop Invariants

Very busy expressions are ideal
candidates for invariant loop motion.
If an expression, invariant in a loop, is
also very busy, we know it must be
used in the future, and hence
evaluation outside the loop must be
worthwhile.

356CS 701 Fall 2005
©

for (...) {

if (...)

 a=b+c;

else a=d+c;}

for (...) {

if (a>b+c)

 x=1;

else x=0;}

t=b+c t=b+c

a=b+c a=d+c

a>b+c

T F

F

F

F T

b+c is not very busy
at loop entrance

b+c is very busy
at loop entrance

357CS 701 Fall 2005
©

Reaching Definitions
We have seen reaching definition
analysis formulated as a set-valued
problem. It can also be formulated on
a per-definition basis.
That is, we ask “What blocks does a
particular definition to v reach?”
This is a boolean-valued, forward
flow data flow problem.

358CS 701 Fall 2005
©

Initially, DefIn(b0) = false.

For basic block b:
DefOut(b) =
 If the definition being analyzed is
 the last definition to v in b
 Then True
Elsif any other definition to v occurs

 in b
 Then False
 Else DefIn(b)
The meet operation (to combine
solutions) is:

 DefIn(b) =

To get all reaching definition, we do a
series of single definition analyses.

OR
p ∈ Pred(b)

 DefOut(p)

359CS 701 Fall 2005
©

Live Variable Analysis
This is a boolean-valued, backward
flow data flow problem.
Initially, LiveOut(blast) = false.

For basic block b:
LiveIn(b) =
 If the variable is used before it is
 defined in b
 Then True
 Elsif it is defined before it is used
 in b
 Then False
 Else LiveOut(b)
The meet operation (to combine
solutions) is:

 LiveOut(b) = OR
s ∈ Succ(b)

 LiveIn(s)

360CS 701 Fall 2005
©

Bit Vectoring Data Flow
Problems

The four data flow problems we have
just reviewed all fit within a single
framework.
Their solution values are Booleans
(bits).
The meet operation is And or OR.
The transfer function is of the general
form
 Out(b) = (In(b) - Killb) U Genb

or
 In(b) = (Out(b) - Killb) U Genb

where Killb is true if a value is “killed”
within b and Genb is true if a value is
“generated” within b.

361CS 701 Fall 2005
©

In Boolean terms:
Out(b) = (In(b) AND Not Killb) OR Genb

or
In(b) = (Out(b) AND Not Killb) OR Genb

An advantage of a bit vectoring data
flow problem is that we can do a series
of data flow problems “in parallel” using
a bit vector.

Hence using ordinary word-level ANDs,
ORs, and NOTs, we can solve 32 (or 64)
problems simultaneously.

362CS 701 Fall 2005
©

Example
 Do live variable analysis for u and v,
using a 2 bit vector:

We expect no variable to be live at
the start of b0. (Why?)

v=1

u=0

a=u v=2

print(u,v)

Gen=0,0
Kill=0,1

Gen=0,0

Gen=1,0 Gen=0,0

Gen=1,1

Kill=1,0

Kill=0,0 Kill=0,1

Kill=0,1

Live=0,0

Live=0,1

Live=1,1 Live=1,0

Live=1,1

363CS 701 Fall 2005
©

Reading Assignment
• Read pages 31-62 of “Automatic

Program Optimization,” by Ron Cytron.
(Linked from the class Web page.)

364CS 701 Fall 2005
©

Depth-First Spanning Trees
Sometimes we want to “cover” the
nodes of a control flow graph with an
acyclic structure.
This allows us to visit nodes once,
without worrying about cycles or
infinite loops.
Also, a careful visitation order can
approximate forward control flow
(very useful in solving forward data
flow problems).
A Depth-First Spanning Tree (DFST) is
a tree structure that covers the nodes
of a control flow graph, with the start
node serving as root of the DFST.

365CS 701 Fall 2005
©

Building a DFST
We will visit CFG nodes in depth-first
order, keeping arcs if the visited node
hasn’t be reached before.
To create a DFST, T, from a CFG, G:

1. T ← empty tree
2. Mark all nodes in G as “unvisited.”
3. Call DF(start node)

DF (node) {
1. Mark node as visited.
2. For each successor, s, of node in G:

If s is unvisited
 (a) Add node → s to T
 (b) Call DF(s)

366CS 701 Fall 2005
©

Example
A

B

C

D

E F

G

H

I J

Visit order is A, B, C, D, E, G, H, I, J, F

367CS 701 Fall 2005
©

The DFST is

A

B

C

D

E F

G

H

I J

368CS 701 Fall 2005
©

Categorizing Arcs using a
DFST

Arcs in a CFG can be categorized by
examining the corresponding DFST.
An arc A→B in a CFG is
(a) An Advancing Edge if B is a proper
 descendent of A in the DFST.
(b) A Retreating Edge if B is an
 ancestor of A in the DFST.
 (This includes the A→A case.)
(c) A Cross Edge if B is neither a
 descendent nor an ancestor of A
 in the DFST.

369CS 701 Fall 2005
©

Example
A

B

C

D

E F

G

H

I J

a
a

a

a

a a

a

a

a a

r

r

r

r

c

370CS 701 Fall 2005
©

Depth-First Order
Once we have a DFST, we can label
nodes with a Depth-First Ordering
(DFO).
Let i = the number of nodes in a CFG
(= the number of nodes in its DFST).
DFO(node) {
 For (each successor s of node) do
 DFO(s);
 Mark node with i;
 i--;
}

371CS 701 Fall 2005
©

Example
The number of nodes = 10.

A

B

C

D

E F

G

H

I J

1

2

3

4

6 5

7

8

10 9

372CS 701 Fall 2005
©

Application of Depth-First
Ordering
• Retreating edges (a necessary component

of loops) are easy to identify:
 a→b is a retreating edge if and only if
 dfo(b) ≤ dfo(a)

• A depth-first ordering in an excellent
visit order for solving forward data flow
problems. We want to visit nodes in
essentially topological order, so that all
predecessors of a node are visited (and
evaluated) before the node itself is.

373CS 701 Fall 2005
©

Dominators
A CFG node M dominates N
(M dom N) if and only if all paths
from the start node to N must pass
through M.
A node trivially dominates itself.
Thus (N dom N) is always true.

A CFG node M strictly dominates N
(M sdom N) if and only if
(M dom N) and M ≠ N.
A node can’t strictly dominates itself.
Thus (N sdom N) is never true.

374CS 701 Fall 2005
©

A CFG node may have many
dominators.

Node F is dominated by F, E, D and A.

A

B C

D

E

F

375CS 701 Fall 2005
©

Immediate Dominators
If a CFG node has more than one
dominator (which is common), there
is always a unique “closest”
dominator called its immediate
dominator.
(M idom N) if and only if

(M sdom N) and
(P sdom N) ⇒ (P dom M)

To see that an immediate dominator
always exists (except for the start
node) and is unique, assume that
node N is strictly dominated by M1,
M2, ..., Mp, P ≥ 2.

By definition, M1, ..., Mp must appear
on all paths to N, including acyclic
paths.

376CS 701 Fall 2005
©

Look at the relative ordering among
M1 to Mp on some arbitrary acyclic
path from the start node to N.
Assume that Mi is “last” on that path
(and hence “nearest” to N).

If, on some other acyclic path,
Mj ≠ Mi is last, then we can shorten
this second path by going directly
from Mi to N without touching any
more of the M1 to Mp nodes.

But, this totally removes Mj from the
path, contradicting the assumption
that (Mj sdom N).

377CS 701 Fall 2005
©

Dominator Trees
Using immediate dominators, we can
create a dominator tree in which A→B
in the dominator tree if and only if
(A idom B).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Control Flow Graph

Dominator Tree

378CS 701 Fall 2005
©

Note that the Dominator Tree of a
CFG and its DFST are distinct trees
(though they have the same nodes).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Dominator Tree

Depth-First Spanning Tree

379CS 701 Fall 2005
©

A Dominator Tree is a compact and
convenient representation of both the
dom and idom relations.
A node in a Dominator Tree
dominates all its descendents in the
tree, and immediately dominates all
its children.

380CS 701 Fall 2005
©

Computing Dominators
Dominators can be computed as a
Set-valued Forward Data Flow
Problem.
If a node N dominates all of node M’s
predecessors, then N appears on all
paths to M. Hence (N dom M).
Similarly, if M doesn’t dominate all of
M’s predecessors, then there is a path
to M that doesn’t include M. Hence
¬(N dom M).
These observations give us a “data
flow equation” for dominator sets:

dom(N) = {N} U ∩ dom(M)
M ∈ Pred(N)

381CS 701 Fall 2005
©

The analysis domain is the lattice of
all subsets of nodes. Top is the set of
all nodes; bottom is the empty set.
The ordering relation is subset.

The meet operation is intersection.

The Initial Condition is that
 DomIn(b0) = φ

DomOut(b) = DomIn(b) U {b}

DomIn(b) = ∩ DomOut(c)
c ∈ Pred(b)

382CS 701 Fall 2005
©

Loops Require Care
Loops in the Control Flow Graph
induce circularities in the Data Flow
equations for Dominators. In

we have the rule dom(B) =
DomOut(B) =

 DomIn(B) U {B} =
 {B} U (DomOut(B) ∩ DomOut(A))
If we choose DomOut(B) = φ initially,
we get DomOut(B) =
{B} U (φ ∩ DomOut(A)) = {B}
which is wrong.

A

B

C

383CS 701 Fall 2005
©

Instead, we should use the Universal
Set (of all nodes) which is the identity
for ∩.
Then we get DomOut(B) =
{B} U ({all nodes} ∩ DomOut(A)) =
{B} U DomOut(A)
 which is correct.

