Very Busy Expressions and Loop Invariants

Very busy expressions are ideal candidates for invariant loop motion.

If an expression, invariant in a loop, is also very busy, we know it must be used in the future, and hence evaluation outside the loop must be worthwhile.

$$
\begin{array}{l} \text{for } (\ldots) \ {\rm if } (\ldots) \\ \text{a=b+c;} \\ \text{else } \text{a=d+c;} \end{array}
$$

$$
for (\ldots) {\n if (a>b+c)\n x=1;\n else x=0;\n}
$$

b+c is not very busy at loop entrance

b+c is very busy at loop entrance

Reaching Definitions

We have seen reaching definition analysis formulated as a set-valued problem. It can also be formulated on a per-definition basis.

That is, we ask "What blocks does a particular definition to v reach?"

This is a boolean-valued, forward flow data flow problem.

```
Initially, DefIn(b<sub>0</sub>) = false.
For basic block b:
DefOut(b) =
  If the definition being analyzed is
    the last definition to v in b
  Then True
 Elsif any other definition to v occurs
     in b
  Then False
  Else DefIn(b)
The meet operation (to combine
solutions) is:
 DefIn(b) =
OR
 DefOut(p)To get all reaching definition, we do a
series of single definition analyses.
              p \in Pred(b)
```
Live Variable Analysis

This is a boolean-valued, backward flow data flow problem. Initially, LiveOut(b_{last}) = false. **For basic block b: LiveIn(b) = If the variable is used before it is defined in b Then True Elsif it is defined before it is used in b Then False Else LiveOut(b) The meet operation (to combine solutions) is:** LiveOut(b) = OR LiveIn(s) $s \in$ Succ(b)

Bit Vectoring Data Flow Problems

The four data flow problems we have just reviewed all fit within a *single* **framework.**

Their solution values are Booleans (bits).

The meet operation is And or OR.

The transfer function is of the general form

 $Out(b) = (In(b) - Kil_b)$ U Gen_b

or

 $In(b) = (Out(b) - Kil_b)$ U Gen_b

where Kill_b is true if a value is "killed" within b and Gen_b is true if a value is **"generated" within b.**

```
In Boolean terms:
```
 $Out(b) = (In(b) AND Not Killing) OR Gen_b$

or

 $In(b) = (Out(b) AND Not Killing) OR Gen_b$

An advantage of a bit vectoring data flow problem is that we can do a series of data flow problems "in parallel" using a bit vector.

Hence using ordinary word-level ANDs, ORs, and NOTs, we can solve 32 (or 64) problems simultaneously.

Example

 Do live variable analysis for u and v, using a 2 bit vector:

We expect no variable to be live at the start of b_0 . (Why?)

Reading Assignment

• Read pages 31-62 of "Automatic Program Optimization," by Ron Cytron. (Linked from the class Web page.)

Depth-First Spanning Trees

Sometimes we want to "cover" the nodes of a control flow graph with an acyclic structure.

This allows us to visit nodes once, without worrying about cycles or infinite loops.

Also, a careful visitation order can approximate forward control flow (very useful in solving forward data flow problems).

A Depth-First Spanning Tree (DFST) is a tree structure that covers the nodes of a control flow graph, with the start node serving as root of the DFST.

Building a DFST

We will visit CFG nodes in depth-first order, keeping arcs if the visited node hasn't be reached before.

To create a DFST, T, from a CFG, G:

- 1. $T \leftarrow$ empty tree
- **2. Mark all nodes in G as "unvisited."**
- **3. Call DF(start node)**
- **DF (node) {**
- **1. Mark node as visited.**
- **2. For each successor, s, of node in G: If s is unvisited** (a) Add node \rightarrow s to T **(b) Call DF(s)**

Categorizing Arcs using a DFST

Arcs in a CFG can be categorized by examining the corresponding DFST.

An arc A→**B in a CFG is**

- **(a) An** *Advancing Edge* **if B is a proper descendent of A in the DFST.**
- **(b) A** *Retreating Edge* **if B is an ancestor of A in the DFST. (This includes the A**→**A case.)**
- **(c) A** *Cross Edge* **if B is neither a descendent nor an ancestor of A in the DFST.**

Depth-First Order

Once we have a DFST, we can label nodes with a *Depth-First Ordering* **(DFO).**

Let i = the number of nodes in a CFG (= the number of nodes in its DFST). DFO(node) {

 For (each successor s of node) do DFO(s);

 Mark node with i;

```
 i--;
}
```


Application of Depth-First Ordering

- **•** *Retreating edges* **(a necessary component of loops) are easy to identify: a**→**b is a retreating edge if and only if dfo(b)** ≤ **dfo(a)**
- **• A depth-first ordering in an excellent** *visit order* **for solving forward data flow problems. We want to visit nodes in essentially topological order, so that all predecessors of a node are visited (and evaluated) before the node itself is.**

Dominators

A CFG node M *dominates* **N (M dom N) if and only if** *all* **paths from the start node to N** *must* **pass through M.**

A node trivially dominates itself. Thus (N dom N) is always true.

A CFG node M *strictly dominates* **N (M sdom N) if and only if (M dom N) and M** \neq **N. A node can't strictly dominates itself. Thus (N sdom N) is never true.**

A CFG node may have many dominators.

Node F is dominated by F, E, D and A.

Immediate Dominators

If a CFG node has more than one dominator (which is common), there is always a unique "closest" dominator called its *immediate dominator***.**

(M idom N) if and only if (M sdom N) and $(P \text{ sdom } N) \Rightarrow (P \text{ dom } M)$

To see that an immediate dominator always exists (except for the start node) and is unique, assume that node N is strictly dominated by M₁, **M2, ..., Mp, P** ≥ **2.**

By definition, M₁, ..., M_p must appear **on** *all* **paths to N, including acyclic paths.**

Look at the relative ordering among M₁ to M_p on some arbitrary acyclic **path from the start node to N. Assume that Mi is "last" on that path (and hence "nearest" to N).**

If, on some other acyclic path, Mj ≠ **Mi is last, then we can shorten this second path by going directly from Mi to N without touching any** more of the M_1 to M_p nodes.

But, this totally removes Mj from the path, contradicting the assumption that (Mj sdom N).

Dominator Trees

Using immediate dominators, we can create a *dominator tree* **in which A**→**B in the dominator tree if and only if (A idom B).**

Note that the Dominator Tree of a CFG and its DFST are distinct trees (though they have the same nodes).

A Dominator Tree is a compact and convenient representation of both the dom and idom relations.

A node in a Dominator Tree dominates all its descendents in the tree, and immediately dominates all its children.

Computing Dominators

Dominators can be computed as a Set-valued Forward Data Flow Problem.

If a node N dominates all of node M's predecessors, then N appears on all paths to M. Hence (N dom M).

Similarly, if M *doesn't* **dominate all of M's predecessors, then there is a path to M that doesn't include M. Hence** $\neg(N$ dom M).

These observations give us a "data flow equation" for dominator sets:

 $dom(N) = \{N\}$ U \cap dom(M) $M \in Pred(N)$

The analysis domain is the lattice of all subsets of nodes. Top is the set of all nodes; bottom is the empty set. The ordering relation is subset.

The meet operation is intersection.

The Initial Condition is that DomIn(b₀) = ϕ

 $DomIn(b) = \cap DomOut(c)$ $c \in \text{Pred}(b)$

DomOut(b) = DomIn(b) U {b}

Loops Require Care

Loops in the Control Flow Graph induce circularities in the Data Flow equations for Dominators. In

we have the rule dom(B) = DomOut(B) = DomIn(B) U {B} = {B} U (DomOut(B) ∩ **DomOut(A)) If we choose DomOut(B) =** φ **initially, we get DomOut(B) = {B} U (**φ ∩ **DomOut(A)) = {B} which is** *wrong***.**

```
Instead, we should use the Universal
Set (of all nodes) which is the identity
for \cap.
```

```
Then we get DomOut(B) =
{B} U ({all nodes} ∩ DomOut(A)) =
{B} U DomOut(A)
 which is correct.
```