
390CS 701 Fall 2005
©

Dominance Frontiers
Dominators and postdominators tell
us which basic block must be
executed prior to, of after, a block N.

It is interesting to consider blocks
“just before” or “just after” blocks
we’re dominated by, or blocks we
dominate.

The Dominance Frontier of a basic
block N, DF(N), is the set of all blocks
that are immediate successors to
blocks dominated by N, but which
aren’t themselves strictly dominated
by N.

391CS 701 Fall 2005
©

DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
The dominance frontier of N is the set
of blocks that are not dominated N
and which are “first reached” on
paths from N.

392CS 701 Fall 2005
©

Example

Block A B C D E F

Dominance
Frontier

φ {F} {E} {E} {F} φ

B

C D

E

F

A

B

C D E

A

Control Flow Graph

Dominator Tree

F

393CS 701 Fall 2005
©

A block can be in its own Dominance
Frontier:

Here, DF(A) = {A}
Why? Reconsider the definition:
DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
Now B is dominated by A and B→A.
Moreover, A does not strictly
dominate itself. So, it meets the
definition.

B

C

A

394CS 701 Fall 2005
©

Postdominance Frontiers
The Postdominance Frontier of a basic
block N, PDF(N), is the set of all
blocks that are immediate
predecessors to blocks postdominated
by N, but which aren’t themselves
postdominated by N.

PDF(N) =
 {Z | Z→M & (N pdom M) &

¬(N pdom Z)}
The postdominance frontier of N is
the set of blocks closest to N where a
choice was made of whether to reach
N or not.

395CS 701 Fall 2005
©

Example

Block A B C D E F

Postdominance
Frontier

φ {A} {B} {B} {A} φ

B

C D

E

F

A

E

B C D

F

Control Flow Graph

Postominator Tree

A

396CS 701 Fall 2005
©

Control Dependence
Since CFGs model flow of control, it
is useful to identify those basic blocks
whose execution is controlled by a
branch decision made by a
predecessor.
We say Y is control dependent on X if,
reaching X, choosing one out arc will
force Y to be reached, while choosing
another arc out of X allows Y to be
avoided.
Formally, Y is control dependent on X
if and only if,
(a) Y postdominates a successor of X.
 (b) Y does not postdominate all

successors of X.
X is the most recent block where a
choice was made to reach Y or not.

397CS 701 Fall 2005
©

Control Dependence Graph
We can build a Control Dependence
Graph that shows (in graphical form)
all Control Dependence relations.
(A Block can be Control Dependent on
itself.)

398CS 701 Fall 2005
©

What happened to H in the CD Graph?

C

D E

F

G

B

F

C D E

B

Control Flow Graph

Postominator Tree

A

H

H

G A

A

B G

C F

D E

Control Dependence
Graph

399CS 701 Fall 2005
©

Let’s reconsider the CD Graph:

Blocks C and F, as well as D and E,
seem to have the same control
dependence relations with their
parent. But this isn’t so!
C and F are control equivalent, but D
and E are mutually exclusive!

C

D E

F

G

B

Control Flow Graph

A

H

A

B G

C F

D E

Control Dependence
Graph

400CS 701 Fall 2005
©

Improving the Representation
of Control Dependence

We can label arcs in the CFG and the
CD Graph with the condition (T or F
or some switch value) that caused the
arc to be selected for execution.
This labeling then shows the
conditions that lead to the execution
of a given block.
To allow the exit block to appear in
the CD Graph, we can also add
“artificial” start and exit blocks,
linked together.

401CS 701 Fall 2005
©

Now C and F have the same Control
Dependence relations—they are part
of the same extended basic block.
But D and E aren’t identically control
dependent. Similarly, A and H are
control equivalent, as are B and G.

C

D E

F

G

B

Control Flow Graph

A

H

A

B G

C F

D E

Control Dependence
Graph

Start

Exit

T

T

T

T

F F

F

F

Start

H

T T

TT

T

T
T

TF

402CS 701 Fall 2005
©

Data Flow Frameworks
Revisited

Recall that a Data Flow problem is
characterized as:
(a) A Control Flow Graph
(b) A Lattice of Data Flow values
(c) A Meet operator to join solutions
 from Predecessors or Successors
(d) A Transfer Function
 Out = fb(In) or In = fb(Out)

403CS 701 Fall 2005
©

Value Lattice
The lattice of values is usually a meet
semilattice defined by:
A: a set of values
T and ⊥ (“top” and “bottom”):

distinguished values in the lattice
≤: A reflexive partial order relating

values in the lattice
∧: An associative and commutative

meet operator on lattice values

404CS 701 Fall 2005
©

Lattice Axioms
The following axioms apply to the
lattice defined by A, T, ⊥, ≤ and ∧:
 a ≤ b ⇔ a ∧ b = a
 a ∧ a = a
 (a ∧ b) ≤ a
 (a ∧ b) ≤ b
 (a ∧ T) = a
 (a ∧ ⊥) = ⊥

405CS 701 Fall 2005
©

Monotone Transfer Function
Transfer Functions, fb:L → L (where L
is the Data Flow Lattice) are normally
required to be monotone.
That is x ≤ y ⇒ fb(x) ≤ fb(y).

This rule states that a “worse” input
can’t produce a “better” output.
Monotone transfer functions allow us
to guarantee that data flow solutions
are stable.
If we had fb(T) = ⊥ and fb(⊥)=T,
then solutions might oscillate
between T and ⊥ indefinitely.
Since ⊥ ≤ T, fb(⊥) should be ≤ fb(T).
But fb(⊥) = T which is not ≤ fb(T) =
⊥. Thus fb isn’t monotone.

406CS 701 Fall 2005
©

Dominators fit the Data Flow
Framework

Given a set of Basic Blocks, N, we
have:

A is 2N (all subsets of Basic Blocks).
T is N.
⊥ is φ.
a ≤ b ≡ a ⊆ b.
fZ(in) = In ∪ {Z}

∧ is ∩ (set intersection).

407CS 701 Fall 2005
©

The required axioms are satisfied:
 a ⊆ b ⇔ a ∩ b = a
 a ∩ a = a
 (a ∩ b) ⊆ a
 (a ∩ b) ⊆ b
 (a ∩ N) = a
 (a ∩ φ) = φ

Also fZ is monotone since

a ⊆ b ⇒ a ∪ {Z} ⊆ b ∪ {Z} ⇒
fZ(a) ⊆ fZ(b)

408CS 701 Fall 2005
©

Constant Propagation
We can model Constant Propagation
as a Data Flow Problem. For each
scalar integer variable, we will
determine whether it is known to
hold a particular constant value at a
particular basic block.
The value lattice is

T represents a variable holding a
constant, whose value is not yet
known.
i represents a variable holding a
known constant value.

T

⊥

..., −2, −1, 0, 1, 2, ...

409CS 701 Fall 2005
©

⊥ represents a variable whose value is
non-constant.

This analysis is complicated by the
fact that variables interact, so we
can’t just do a series of independent
one variable analyses.

Instead, the solution lattice will
contain functions (or vectors) that
map each variable in the program to
its constant status (T, ⊥, or some
integer).
Let V be the set of all variables in a
program.

410CS 701 Fall 2005
©

Let t : V → N U {T,⊥}
t is the set of all total mappings from
V (the set of variables) to N U {T,⊥}
(the lattice of “constant status”
values).
For example, t1=(T,6,⊥) is a mapping
for three variables (call them A, B and
C) into their constant status. t1 says
A is considered a constant, with value
as yet undetermined. B holds the
value 6, and C is non-constant.
We can create a lattice composed of t
functions:
tT(V) = T (∀ V) (tT=(T,T,T, ...)

t⊥(V) = ⊥ (∀ V) (t⊥=(⊥,⊥,⊥, ...)

411CS 701 Fall 2005
©

ta ≤ tb ⇔ ∀v ta(v) ≤ tb(v)

Thus (1,⊥) ≤ (T,3)
 since 1 ≤ T and ⊥ ≤ 3.
The meet operator ∧ is applied
componentwise:
ta∧tb = tc
 where ∀v tc(v) = ta(v) ∧ tb(b)

Thus (1,⊥) ∧ (T,3) = (1,⊥)
 since 1 ∧ T = 1 and ⊥ ∧ 3 = ⊥.

412CS 701 Fall 2005
©

The lattice axioms hold:
 ta ≤ tb ⇔ ta ∧ tb = ta (since this

axiom holds for each component)
 ta ∧ ta = ta (trivially holds)

 (ta ∧ tb) ≤ ta (per variable def of ∧)

 (ta ∧ tb) ≤ tb (per variable def of ∧)

 (ta ∧ tT) = ta (true for all
components)

 (ta ∧ t⊥) = t⊥ (true for all
components)

413CS 701 Fall 2005
©

The Transfer Function
Constant propagation is a forward
flow problem, so Cout = fb(Cin)

Cin is a function, t(v), that maps
variables to T,⊥, or an integer value
fb(t(v)) is defined as:

(1) Initially, let t’(v)=t(v) (∀v)
(2) For each assignment statement
 v = e(w1,w2,...,wn)

 in b, in order of execution, do:
 If any t’(wi) = ⊥ (1≤i≤n)
 Then set t’(v) = ⊥ (strictness)
 Elsif any t’(wi) = T (1≤i≤n)
 Then set t’(v) = T (delay eval of v)
 Else t’(v) = e(t’(w1),t’(w2),...)
(3) Cout = t’(v)

414CS 701 Fall 2005
©

Note that in valid programs, we don’t
use uninitialized variables, so
variables mapped to T should only
occur prior to initialization.
Initially, all variables are mapped to T,
indicating that initially their constant
status is unknown.

415CS 701 Fall 2005
©

Example

a=1
b=2

b=a+1 b=a+2

b=b-1

T, T

1,21,2

1,2 1,3

1,⊥

1,⊥
1,⊥

416CS 701 Fall 2005
©

Distributive Functions
From the properties of ∧ and f’s
monotone property, we can show that
 f(a∧b) ≤ f(a) ∧ f(b)
To see this note that
 a∧b ≤ a, a∧b ≤ b ⇒
f(a∧b) ≤ f(a), f(a∧b) ≤ f(b) (*)
Now we can establish that
 x≤y, x≤z ⇒ x ≤ y∧z (**)
To see that (**) holds, note that
 x≤y ⇒ x∧y = x
 x≤z ⇒ x∧z = x
 (y∧z)∧x ≤ y∧z
 (y∧z)∧x = (y∧z)∧(x∧x) =
 (y∧x)∧(z∧x) = x∧x = x
 Thus x ≤ y∧z, establishing (**).

417CS 701 Fall 2005
©

Now substituting f(a∧b) for x,
 f(a) for y and f(b) for z in (**) and
using (*) we get
 f(a∧b) ≤ f(a) ∧ f(b).

Many Data Flow problems have flow
equations that satisfy the distributive
property:
f(a∧b) = f(a) ∧ f(b)
For example, in our formulation of
dominators:
Out = fb(In) = In U {b}

where

In = ∩ Out(p)
p ∈ Pred(b)

418CS 701 Fall 2005
©

In this case, ∧ = ∩.

Now fb(S1∩S2) = (S1∩S2) U {b}

Also, fb(S1)∩fb(S2) =

 (S1 U {b}) ∩ (S2 U {b}) =
 (S1∩S2) U {b}

So dominators are distributive.

