Dominance Frontiers

Dominators and postdominators tell
us which basic block must be
executed prior to, of after, a block N.

It is interesting to consider blocks
“just before” or “just after” blocks
we’re dominated by, or blocks we
dominate.

The Dominance Frontier of a basic
block N, DF(N), is the set of all blocks
that are immediate successors to
blocks dominated by N, but which
aren’t themselves strictly dominated
by N.

€S 70! Fall 2005°

390

Example
‘
B
PN
(D] e E\
N
Dominator Tree
Control Flow Graph
Block A B c D E F

Dominance
Frontier

& & | e

S

€S 701 Fall 2005°

DF(N) =
{Z|M-Z & (N dom M) &
= (N sdom 2)}

The dominance frontier of N is the set
of blocks that are not dominated N
and which are “first reached” on
paths from N.

€S 70! Fall 2005°

A block can be in its own Dominance
Frontier:

]

HE

Here, DF(A) = {A}
Why? Reconsider the definition:
DF(N) =
{Z|M-Z & (N dom M) &
- (N sdom Z)}
Now B is dominated by A and B - A.

Moreover, A does not strictly
dominate itself. So, it meets the
definition.

€S 701 Fall 2005°

393

Postdominance Frontiers

The Postdominance Frontier of a basic
block N, PDF(N), is the set of all
blocks that are immediate
predecessors to blocks postdominated
by N, but which aren’t themselves
postdominated by N.

PDF(N) =
{Z|Z-M & (N pdom M) &

= (N pdom 2Z)}
The postdominance frontier of N is
the set of blocks closest to N where a
choice was made of whether to reach
N or not.

€S 70! Fall 2005°

Control Dependence

Since CFGs model flow of control, it
is useful to identify those basic blocks
whose execution is controlled by a
branch decision made by a
predecessor.

We say Y is control dependent on X if,
reaching X, choosing one out arc will
force Y to be reached, while choosing
another arc out of X allows Y to be
avoided.

Formally, Y is control dependent on X
if and only if,

(@) Y postdominates a successor of X.

(b) Y does not postdominate all
successors of X.

X is the most recent block where a
choice was made to reach Y or not.

€S 701 Fall 2005°

396

Example
‘
8]
SN
L (o]
Postominator Tree

Control Flow Graph

Block A B C D E F
Postdominance | @ | {A} | {B} | {B} | {A}| @

Frontier

€S 70! Fall 2005° 395

Control Dependence Graph

We can build a Control Dependence
Graph that shows (in graphical form)
all Control Dependence relations.

(A Block can be Control Dependent on
itself.)

€S 701 Fall 2005° 397

/ N
4
<] E (€]
Postommator Tree
Ch g
Control Flow Graph [c] -
Control Dependence

Graph
What happened to H in the CD Graph?

€S 70! Fall 2005° 398

Improving the Representation
of Control Dependence

We can label arcs in the CFG and the
CD Graph with the condition (T or F
or some switch value) that caused the
arc to be selected for execution.

This labeling then shows the
conditions that lead to the execution
of a given block.

To allow the exit block to appear in
the CD Graph, we can also add
“artificial” start and exit blocks,
linked together.

€S 70! Fall 2005° 400

Let’s reconsider the CD Graph:

Cﬁ =
tha
PN a
[0]
\ Contésellp?hependence

Control Flow Graph

Blocks C and F, as well as D and E,
seem to have the same control
dependence relations with their
parent. But this isn't so!

C and F are control equivalent, but D
and E are mutually exclusive!

€S 70! Fall 2005° 399

Start

AN

\T
(H

i

N

Control Dependence
Graph

Control Flow Graph

Now C and F have the same Control
Dependence relations—they are part
of the same extended basic block.

But D and E aren’t identically control
dependent. Similarly, A and H are
control equivalent, as are B and G.

€S 701 Fall 2005°

Data Flow Frameworks
Revisited

Recall that a Data Flow problem is
characterized as:

(@) A Control Flow Graph
(b) A Lattice of Data Flow values

(c) A Meet operator to join solutions
from Predecessors or Successors

(d) A Transfer Function
Out = fi(In) or In = f,(Out)

€S 70! Fall 2005° 402

Lattice Axioms

The following axioms apply to the
lattice defined by A, T, [J, < and [

as<b < alb=a
alla=a
(@aldb)<a
(@db)<b
@dTm) =a
@ooy=0

€S 70! Fall 2005° 404

Value Lattice

The lattice of values is usually a meet
semilattice defined by:

A: a set of values

T and OJ (“top” and “bottom”):
distinguished values in the lattice

<: A reflexive partial order relating
values in the lattice

[An associative and commutative
meet operator on lattice values

€S 70! Fall 2005° 403

Monotone Transfer Function

Transfer Functions, f:.L — L (where L
Is the Data Flow Lattice) are normally
required to be monotone.

Thatisx <y O fy(x) < f(y).

This rule states that a “worse” input
can’'t produce a “better” output.

Monotone transfer functions allow us
to guarantee that data flow solutions
are stable.

If we had f,(T) = O and f,(0)=T,
then solutions might oscillate
between T and [indefinitely.

Since O < T, f,(0) should be < f,(T).
But f,(LJ) = T which is not < f,(T) =
(1. Thus fy, isn’t monotone.

€S 701 Fall 2005° 405

Dominators fit the Data Flow
Framework

Given a set of Basic Blocks, N, we

have:

A is 2N (all subsets of Basic Blocks).
Tis N.

[Tis @.

as<b=alb.

fz(in) = In O {Z}
[Jis n (set intersection).

€S 70! Fall 2005°

406

Constant Propagation

We can model Constant Propagation
as a Data Flow Problem. For each
scalar integer variable, we will
determine whether it is known to
hold a particular constant value at a
particular basic block.

The value lattice is

AN

T represents a variable holding a
constant, whose value is not yet
known.

I represents a variable holding a
known constant value.

€S 701 Fall 2005°

408

The required axioms are satisfied:
allb =anb=a

ana=a

(anb)yOa

(@nbOb

(@nN)=a

@n@=9

Also f; is monotone since

alb0 al{Z}0 bO{Z} O
fz(a) U f(b)

€S 70! Fall 2005° 407

[represents a variable whose value is
non-constant.

This analysis is complicated by the
fact that variables interact, so we
can't just do a series of independent
one variable analyses.

Instead, the solution lattice will
contain functions (or vectors) that
map each variable in the program to
its constant status (T, [J, or some
integer).

Let V be the set of all variables in a
program.

€S 701 Fall 2005° 409

lett:V - NU{T.} t, <ty « Oviy(v) < ty(v)

t is the set of all total mappings from Thus (1,0) < (T,3)

V (the set of variables) to N U {T,[1} since1<Tand O<3.

(the lattice of “constant status” The meet operator [is applied
values). _ _ componentwise:

For example, t,=(T,6,0) is a mapping £t = t

for three variables (call them A, B and 8 © _

C) into their constant status. t; says where v t(v) = (V) Htp(b)
A is considered a constant, with value Thus (1,00) O(T,3) = (1,0)

as yet undetermined. B holds the since 1 UT=1and 003 =0
value 6, and C is non-constant.

We can create a lattice composed of t

functions:

tr(V) = T (@O V) (=(TTT, ..)

to(V) =00V =04, ..)

The lattice axioms hold: The Transfer Function

sty - 1t Ut =1, (since this Constant propagation is a forward
axiom holds for each component) flow problem, so Cout = f,(Cin)

ta Uty = 1, (trivially holds) Cin is a function, t(v), that maps

(t, Oty) < t, (per variable def of [) variables to T,0J, or an integer value

(t, Ot,) <ty (per variable def of [fp(t(v)) is defined as:

(ty Oty) = t, (true for all (1) Initially, let t'(v)=t(v) (0v)
components) (2) For each assignment statement

(t, Oto) = tg (true for all vV = e(Wy,Wp,....Wp)
components) in b, in order of execution, do:

If any t'(w;) = O (1<i<n)
Then set t'(v) = [J (strictness)
Elsif any t'(w;) = T (1<i<n)
Then set t'(v) = T (delay eval of v)
Else t'(v) = e(t'(wyq),t'(w>),...)

(3) Cout = t'(v)

€S 701 Fall 2005° 412 €S 701 Fall 2005°

Note that in valid programs, we don’t Example
use uninitialized variables, so
variables mapped to T should only
occur prior to initialization.

Initially, all variables are mapped to T,
indicating that initially their constant
status is unknown. b=a+1

€S 70! Fall 2005° 414 €S 70! Fall 2005°

Distributive Functions Now substituting f(alb) for x,
f(a) for y and f(b) for z in (**) and
using (*) we get

f(alb) < f(a) O (b).

From the properties of [Jand f's
monotone property, we can show that
f(alh) < f(a) O f(b)

To see this note that

atb<a ab<bl Many Data Flow problems have flow

equations that satisfy the distributive

f(alb) < f(a), falb) < f(b) (%) property:

Now we can establish that f(alb) = f(a) O f(b)

xsy, x<z 0 x < yle (*) For example, in our formulation of
To see that (**) holds, note that dominators:

x<y O xOy = x Out = fy(In) = In U {b}

x<z 00 x[Zz =X where

(yEz)Dx < yie In= 0 Out(p)

(YIz) [k = (yLz)A(x[K) = p O Pred(b)

(YIX)(z[X) = x[X = x
Thus x < y[k, establishing (**).

€S 701 Fall 2005° 416 €S 701 Fall 2005°

In this case, 0= N,
Now f,,(S17S;) = (§:1S) U {b}
Also, f,(S1)"fy(Sy) =

(S U {b}) M (S, U {b}) =

(511Sy) U {b}
So dominators are distributive.

€S 70! Fall 2005°

418

