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Dominance Frontiers
Dominators and postdominators tell
us which basic block must be
executed prior to, of after, a block N.

It is interesting to consider blocks
“just before” or “just after” blocks
we’re dominated by, or blocks we
dominate.

The Dominance Frontier of a basic
block N, DF(N), is the set of all blocks
that are immediate successors to
blocks dominated by N, but which
aren’t themselves strictly dominated
by N.
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DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
The dominance frontier of N is the set
of blocks that are not dominated N
and which are “first reached” on
paths from N.
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Example

Block A B C D E F

Dominance
Frontier
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A block can be in its own Dominance
Frontier:

Here, DF(A) = {A}
Why? Reconsider the definition:
DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
Now B is dominated by A and B→A.
Moreover, A does not strictly
dominate itself. So, it meets the
definition.

B

C

A
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Postdominance Frontiers
The Postdominance Frontier of a basic
block N, PDF(N), is the set of all
blocks that are immediate
predecessors to blocks postdominated
by N, but which aren’t themselves
postdominated by N.

PDF(N) =
 {Z | Z→M & (N pdom M) &

¬(N pdom Z)}
The postdominance frontier of N is
the set of blocks closest to N where a
choice was made of whether to reach
N or not.
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Example

Block A B C D E F

Postdominance
Frontier

φ {A} {B} {B} {A} φ
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Control Dependence
Since CFGs model flow of control, it
is useful to identify those basic blocks
whose execution is controlled by a
branch decision made by a
predecessor.
We say Y is control dependent on X if,
reaching X, choosing one out arc will
force Y to be reached, while choosing
another arc out of X allows Y to be
avoided.
Formally, Y is control dependent on X
if and only if,
(a) Y postdominates a successor of X.
 (b) Y does not postdominate all

successors of X.
X is the most recent block where a
choice was made to reach Y or not.
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Control Dependence Graph
We can build a Control Dependence
Graph that shows (in graphical form)
all Control Dependence relations.
(A Block can be Control Dependent on
itself.)
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What happened to H in the CD Graph?
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Let’s reconsider the CD Graph:

Blocks C and F, as well as D and E,
seem to have the same control
dependence relations with their
parent. But this isn’t so!
C and F are control equivalent, but D
and E are mutually exclusive!
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Improving the Representation
of Control Dependence

We can label arcs in the CFG and the
CD Graph with the condition (T or F
or some switch value) that caused the
arc to be selected for execution.
This labeling then shows the
conditions that lead to the execution
of a given block.
To allow the exit block to appear in
the CD Graph, we can also add
“artificial” start and exit blocks,
linked together.
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Now C and F have the same Control
Dependence relations—they are part
of the same extended basic block.
But D and E aren’t identically control
dependent. Similarly, A and H are
control equivalent, as are B and G.
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Data Flow Frameworks
Revisited

Recall that a Data Flow problem is
characterized as:
(a) A Control Flow Graph
(b) A Lattice of Data Flow values
(c) A Meet operator to join solutions
     from Predecessors or Successors
(d) A Transfer Function
      Out = fb(In) or In = fb(Out)
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Value Lattice
The lattice of values is usually a meet
semilattice defined by:
A: a set of values
T and ⊥ (“top” and “bottom”):

distinguished values in the lattice
≤: A reflexive partial order relating

values in the lattice
∧: An associative and commutative

meet operator on lattice values
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Lattice Axioms
The following axioms apply to the
lattice defined by A, T, ⊥, ≤ and ∧:
 a ≤ b ⇔ a ∧ b = a
 a ∧ a = a
 (a ∧ b) ≤ a
 (a ∧ b) ≤ b
 (a ∧ T) = a
 (a ∧ ⊥) = ⊥
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Monotone Transfer Function
Transfer Functions, fb:L → L (where L
is the Data Flow Lattice) are normally
required to be monotone.
That is x ≤ y ⇒ fb(x) ≤ fb(y).

This rule states that a “worse” input
can’t produce a “better” output.
Monotone transfer functions allow us
to guarantee that data flow solutions
are stable.
If we had fb(T) = ⊥ and fb(⊥)=T,
then solutions might oscillate
between T and ⊥ indefinitely.
Since ⊥ ≤ T, fb(⊥) should be ≤ fb(T).
But fb(⊥) = T which is not ≤ fb(T) =
⊥. Thus fb isn’t monotone.
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Dominators fit the Data Flow
Framework

Given a set of Basic Blocks, N, we
have:

A is 2N (all subsets of Basic Blocks).
T is N.
⊥ is φ.
a ≤ b ≡ a ⊆ b.
fZ(in) = In ∪ {Z}

∧ is ∩ (set intersection).
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The required axioms are satisfied:
 a ⊆ b ⇔ a ∩ b = a
 a ∩ a = a
 (a ∩ b) ⊆ a
 (a ∩ b) ⊆ b
 (a ∩ N) = a
 (a ∩ φ) = φ

Also fZ is monotone since

a ⊆ b ⇒ a ∪ {Z} ⊆  b ∪ {Z} ⇒
fZ(a) ⊆  fZ(b)
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Constant Propagation
We can model Constant Propagation
as a Data Flow Problem. For each
scalar integer variable, we will
determine whether it is known to
hold a particular constant value at a
particular basic block.
The value lattice is

T represents a variable holding a
constant, whose value is not yet
known.
i represents a variable holding a
known constant value.

T

⊥

..., −2, −1, 0, 1, 2, ...
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⊥ represents a variable whose value is
non-constant.

This analysis is complicated by the
fact that variables interact, so we
can’t just do a series of independent
one variable analyses.

Instead, the solution lattice will
contain functions (or vectors) that
map each variable in the program to
its constant status (T, ⊥, or some
integer).
Let V be the set of all variables in a
program.
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Let t : V → N U {T,⊥}
t is the set of all total mappings from
V (the set of variables) to N U {T,⊥}
(the lattice of “constant status”
values).
For example, t1=(T,6,⊥) is a mapping
for three variables (call them A, B and
C) into their constant status. t1 says
A is considered a constant, with value
as yet undetermined. B holds the
value 6, and C is non-constant.
We can create a lattice composed of t
functions:
tT(V) = T (∀ V) (tT=(T,T,T, ...)

t⊥(V) = ⊥ (∀ V) (t⊥=(⊥,⊥,⊥, ...)
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ta ≤ tb ⇔ ∀v ta(v) ≤ tb(v)

Thus (1,⊥) ≤ (T,3)
  since 1 ≤ T and ⊥ ≤ 3.
The meet operator ∧ is applied
componentwise:
ta∧tb = tc
   where ∀v tc(v) =  ta(v) ∧ tb(b)

Thus (1,⊥) ∧ (T,3) = (1,⊥)
  since 1 ∧ T = 1 and ⊥ ∧ 3 = ⊥.
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The lattice axioms hold:
 ta ≤ tb ⇔ ta ∧ tb = ta (since this

axiom holds for each component)
 ta ∧ ta = ta  (trivially holds)

 (ta ∧ tb) ≤ ta (per variable def of ∧)

 (ta ∧ tb) ≤ tb (per variable def of ∧)

 (ta ∧ tT) = ta (true for all
components)

 (ta ∧ t⊥) = t⊥ (true for all
components)
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The Transfer Function
Constant propagation is a forward
flow problem, so Cout = fb(Cin)

Cin is a function, t(v), that maps
variables to T,⊥, or an integer value
fb(t(v)) is defined as:

(1) Initially, let t’(v)=t(v) (∀v)
(2) For each assignment statement
        v = e(w1,w2,...,wn)

     in b, in order of execution, do:
     If any t’(wi) = ⊥ ( 1≤i≤n )
     Then set t’(v) = ⊥ (strictness)
     Elsif any t’(wi) = T (1≤i≤n )
     Then set t’(v) = T (delay eval of v)
     Else t’(v) = e(t’(w1),t’(w2),...)
(3) Cout = t’(v)
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Note that in valid programs, we don’t
use uninitialized variables, so
variables mapped to T should only
occur prior to initialization.
Initially, all variables are mapped to T,
indicating that initially their constant
status is unknown.
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Example

a=1
b=2

b=a+1 b=a+2

b=b-1

T, T

1,21,2

1,2 1,3

1,⊥

1,⊥
1,⊥
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Distributive Functions
From the properties of ∧ and f’s
monotone property, we can show that
 f(a∧b) ≤ f(a) ∧ f(b)
To see this note that
 a∧b ≤ a, a∧b ≤ b ⇒
f(a∧b) ≤ f(a), f(a∧b) ≤ f(b)     (*)
Now we can establish that
 x≤y, x≤z ⇒ x ≤ y∧z           (**)
To see that (**) holds, note that
 x≤y ⇒ x∧y = x
 x≤z ⇒ x∧z = x
 (y∧z)∧x ≤ y∧z
 (y∧z)∧x = (y∧z)∧(x∧x) =
               (y∧x)∧(z∧x) = x∧x = x
 Thus x ≤ y∧z, establishing (**).
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Now substituting f(a∧b) for x,
 f(a) for y and f(b) for z in (**) and
using (*) we get
 f(a∧b) ≤ f(a) ∧ f(b).

Many Data Flow problems have flow
equations that satisfy the distributive
property:
f(a∧b) = f(a) ∧ f(b)
For example, in our formulation of
dominators:
Out = fb(In) = In U {b}

where

In = ∩ Out(p)
p ∈ Pred(b)
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In this case, ∧ = ∩.

Now fb(S1∩S2) = (S1∩S2) U {b}

Also, fb(S1)∩fb(S2) =

  (S1 U {b}) ∩ (S2 U {b}) =
  (S1∩S2) U {b}

So dominators are distributive.


