
419CS 701 Fall 2005
©

Not all Data Flow Problems
are Distributive

Constant propagation is not
distributive.
Consider the following (with variables
(x,y,z)):

Now f(t)=t’ where
t’(y) = t(y), t’(z) = t(z),
t’(x) = if t(y)=⊥ or t(z) = ⊥
 then ⊥
 elseif t(y)=T or t(z) =T
 then T
 else t(y)+t(z)

x=y+z

t1 = (T,1,3) t2=(T,2,2)

420CS 701 Fall 2005
©

Now f(t1∧t2) = f(T,⊥,⊥) = (⊥,⊥,⊥)

f(t1) = (4,1,3)

f(t2) = (4,2,2)

f(t1)∧f(t2) = (4,⊥,⊥) ≥ (⊥,⊥,⊥)

421CS 701 Fall 2005
©

Why does it Matter if a Data
Flow Problem isn’t
Distributive?

Consider actual program execution
paths from b0 to (say) bk.

One path might be b0,bi1,bi2,...,bin
where bin=bk.

At bk the Data Flow information we
want is
fin(...fi2(fi1(f0(T)))...) ≡ f(b0,b1,...,bin)

On a different path to bk, say
b0,bj1,bj2,...,bjm, where bjm=bk

the Data Flow result we get is
fjm(...fj2(fj1(f0(T)))...) ≡

f(b0,bj1,...,bjm).

422CS 701 Fall 2005
©

Since we can’t know at compile time
which path will be taken, we must
combine all possible paths:

This is the meet over all paths (MOP)
solution. It is the best possible static
solution. (Why?)
As we shall see, the meet over all
paths solution can be computed
efficiently, using standard Data Flow
techniques, if the problem is
Distributive.
Other, non-distributive problems (like
Constant Propagation) can’t be solved
as precisely.
Explicitly computing and meeting all
paths is prohibitively expensive.

∧
p paths to bk

f(p)
∈ all

423CS 701 Fall 2005
©

Conditional Constant
Propagation

We can extend our Constant
Propagation Analysis to determine
that some paths in a CFG aren’t
executable. This is Conditional
Constant Propagation.
Consider

i = 1;

 if (i > 0)
 j = 1;
 else j = 2;

Conditional Constant Propagation can
determine that the else part of the if
is unreachable, and hence j must be
1.

424CS 701 Fall 2005
©

The idea behind Conditional Constant
Propagation is simple. Initially, we
mark all edges out of conditionals as
“not reachable.”
Starting at b0, we propagate constant
information only along edges
considered reachable.
When a boolean expression b(v1,v2,...)
controls a conditional branch, we
evaluate b(v1,v2,...) using the t(v)
mapping that identifies the “constant
status” of variables.
If t(vi)=T for any vi, we consider all
out edges unreachable (for now).
Otherwise, we evaluate b(v1,v2,...)
using t(v), getting true, false or ⊥.

425CS 701 Fall 2005
©

Note that the short-circuit properties
of boolean operators may yield true
or false even if t(vi)=⊥ for some vi.

If b(v1,v2,...) is true or false, we mark
only one out edge as reachable.
Otherwise, if b(v1,v2,...) evaluates to
⊥, we mark all out edges as reachable.
We propagate constant information
only along reachable edges.

426CS 701 Fall 2005
©

Example
i = 1;
done = 0;

while (i > 0 && ! done) {

 if (i == 1)
 done = 1;
 else i = i + 1;
}

i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

427CS 701 Fall 2005
©

Pass 1:

i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

(1,0)

(1,0)

(1,0)

(1,1)

(1,1)

428CS 701 Fall 2005
©

Pass 2:

i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

(1,0)

(1,⊥)

(1,⊥)

(1,1)

(1,1)

(1,⊥)

