
419CS 701 Fall 2005
©

Not all Data Flow Problems
are Distributive

Constant propagation is not
distributive.
Consider the following (with variables
(x,y,z)):

Now f(t)=t’ where
t’(y) = t(y), t’(z) = t(z),
t’(x) = if t(y)=⊥ or t(z) = ⊥
 then ⊥
 elseif t(y)=T or t(z) =T
 then T
 else t(y)+t(z)

x=y+z

t1 = (T,1,3) t2=(T,2,2)

420CS 701 Fall 2005
©

Now f(t1∧t2) = f(T,⊥,⊥) = (⊥,⊥,⊥)

f(t1) = (4,1,3)

f(t2) = (4,2,2)

f(t1)∧f(t2) = (4,⊥,⊥) ≥ (⊥,⊥,⊥)

421CS 701 Fall 2005
©

Why does it Matter if a Data
Flow Problem isn’t
Distributive?

Consider actual program execution
paths from b0 to (say) bk.

One path might be b0,bi1,bi2,...,bin
where bin=bk.

At bk the Data Flow information we
want is
fin(...fi2(fi1(f0(T)))...) ≡ f(b0,b1,...,bin)

On a different path to bk, say
b0,bj1,bj2,...,bjm, where bjm=bk

the Data Flow result we get is
fjm(...fj2(fj1(f0(T)))...) ≡

f(b0,bj1,...,bjm).

422CS 701 Fall 2005
©

Since we can’t know at compile time
which path will be taken, we must
combine all possible paths:

This is the meet over all paths (MOP)
solution. It is the best possible static
solution. (Why?)
As we shall see, the meet over all
paths solution can be computed
efficiently, using standard Data Flow
techniques, if the problem is
Distributive.
Other, non-distributive problems (like
Constant Propagation) can’t be solved
as precisely.
Explicitly computing and meeting all
paths is prohibitively expensive.

∧
p paths to bk

f(p)
∈ all

423CS 701 Fall 2005
©

Conditional Constant
Propagation

We can extend our Constant
Propagation Analysis to determine
that some paths in a CFG aren’t
executable. This is Conditional
Constant Propagation.
Consider

i = 1;

 if (i > 0)
 j = 1;
 else j = 2;

Conditional Constant Propagation can
determine that the else part of the if
is unreachable, and hence j must be
1.

424CS 701 Fall 2005
©

The idea behind Conditional Constant
Propagation is simple. Initially, we
mark all edges out of conditionals as
“not reachable.”
Starting at b0, we propagate constant
information only along edges
considered reachable.
When a boolean expression b(v1,v2,...)
controls a conditional branch, we
evaluate b(v1,v2,...) using the t(v)
mapping that identifies the “constant
status” of variables.
If t(vi)=T for any vi, we consider all
out edges unreachable (for now).
Otherwise, we evaluate b(v1,v2,...)
using t(v), getting true, false or ⊥.

425CS 701 Fall 2005
©

Note that the short-circuit properties
of boolean operators may yield true
or false even if t(vi)=⊥ for some vi.

If b(v1,v2,...) is true or false, we mark
only one out edge as reachable.
Otherwise, if b(v1,v2,...) evaluates to
⊥, we mark all out edges as reachable.
We propagate constant information
only along reachable edges.

426CS 701 Fall 2005
©

Example
i = 1;
done = 0;

while (i > 0 && ! done) {

 if (i == 1)
 done = 1;
 else i = i + 1;
}

i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

427CS 701 Fall 2005
©

Pass 1:

i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

(1,0)

(1,0)

(1,0)

(1,1)

(1,1)

428CS 701 Fall 2005
©

Pass 2:

i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

(1,0)

(1,⊥)

(1,⊥)

(1,1)

(1,1)

(1,⊥)

429CS 701 Fall 2005
©

Reading Assignment
• Read pages 63-end of “Automatic

Program Optimization,” by Ron Cytron.
(Linked from the class Web page.)

430CS 701 Fall 2005
©

Iterative Solution of Data Flow
Problems

This algorithm will use DFO
numbering to determine the order in
which blocks are visited for
evaluation. We iterate over the nodes
until convergence.

431CS 701 Fall 2005
©

EvalDF{
 For (all n ∈ CFG) {
 soln(n) = T
 ReEval(n) = true }
 Repeat
 LoopAgain = false
 For (all n ∈ CFG in DFO order){
 If (ReEval(n)) {
 ReEval(n) = false
 OldSoln = soln(n)
 In =

 soln(n) = fn(In)
 If (soln(n) ≠ OldSoln) {
 For (all s ∈ Succ(n)) {
 ReEval(s) = true
 LoopAgain = LoopAgain OR

 IsBackEdge(n,s)
 } } } }
 Until (! LoopAgain)
}

∧
p ∈ Pred(n)

 soln(p)

432CS 701 Fall 2005
©

Example: Reaching Definitions

x ←

x ←

←x

0

1

2 3

4

5 6

7

8

433CS 701 Fall 2005
©

We’ll do this as a set-valued problem
(though it really is just three bit-
valued analyses, since each analysis is
independent).
L is the power set of Basic Blocks
∧ is set union
T is φ; ⊥ is the set of all blocks
a ≤ b ≡ b ⊆ a
f3(in) = {3}
f6(in) = {6}
f7(in) = {7}
For all other blocks, fb(in) = in

434CS 701 Fall 2005
©

We’ll track soln and ReEval across
multiple passes

0 1 2 3 4 5 6 7 8 Loop-
Again

Initial φ φ φ φ φ φ φ φ φ true

true true true true true true true true true

Pass 1 φ φ φ {3} {3} {3} {6} {7} {7} true

false true false false true false false false false

Pass 2 φ {3} {3} {3} {3,7} {3,7} {6} {7} {7} true

false true false false false false false false false

Pass 3 φ {3,7} {3,7} {3} {3,7} {3,7} {6} {7} {7} false

false false false false false false false false false

435CS 701 Fall 2005
©

Properties of Iterative Data
Flow Analysis
• If the height of the lattice (the

maximum distance from T to ⊥) is finite,
then termination is guaranteed.
Why?
Recall that transfer functions are
assumed monotone (a ≤ b ⇒ f(a) ≤ f(b)).
Also, ∧ has the property that
a∧b ≤ a and a∧b ≤ b.
At each iteration, some solution value
must change, else we halt. If something
changes it must “move down” the lattice
(we start at T). If the lattice has finite
height, each block’s value can change
only a bounded number of times. Hence
termination is guaranteed.

436CS 701 Fall 2005
©

• If the iterative data flow algorithm
terminates, a valid solution must have
been computed. (This is because data
flow values flow forward, and any
change along a backedge forces another
iteration.)

437CS 701 Fall 2005
©

How Many Iterations are
Needed?

Can we bound the number of
iterations needed to compute a data
flow solution?
In our example, 3 passes were needed,
but why?
In an “ideal” CFG, with no loops or
backedges, only 1 pass is needed.
With backedges, it can take several
passes for a value computed in one
block to reach a block that depends
upon the value.

438CS 701 Fall 2005
©

Let p be the maximum number of
backedges in any acyclic path in the
CFG.
Then (p+1) passes suffice to
propagate a data flow value to any
other block that uses it.
Recall that any block’s value can
change only a bounded number of
times. In fact, the height of the
lattice (maximum distance from top
to bottom) is that bound.
Thus the maximum number of passes
in our iterative data flow evaluator =
(p+1) * Height of Lattice
In our example, p = 2 and lattice
height really was 1 (we did 3
independent bit valued problems).
So passes needed = (2+1)*1 = 3.

439CS 701 Fall 2005
©

Rapid Data Flow Frameworks
We still have the concern that it may
take many passes to traverse a
solution lattice that has a significant
height.
Many data flow problems are rapid.
For rapid data flow problems, extra
passes to feed back values along
cyclic paths aren’t needed.
For a data flow problem to be rapid
we require that:
(∀a ∈ A)(∀f ∈ F) a ∧ f(T) ≤ f(a)

440CS 701 Fall 2005
©

This is an odd requirement that states
that using f(T) as a very crude
approximation to a value computed
by F is OK when joined using the ∧
operator. In effect the term “a” rather
than f(T) is dominant).
(Recall that a ∧ f(a) ≤ f(a) always
holds.)

441CS 701 Fall 2005
©

How does the Rapid Data Flow
Property Help?

Consider a direct feedback loop (the
idea holds for indirect loops too):

a is an input from outside the loop.
Our concern is how often we’ll need
to reevaluate f, as new values are
computed and fed back into f.
Initially, we’ll use T to model the
value on the backedge.

f

a

442CS 701 Fall 2005
©

Iteration 1: Input = a ∧ T = a
 Output = f(a)
Iteration 2: Input = a ∧ f(a)
 Output = f(a ∧ f(a))
Iteration 3: Input = a ∧ f(a ∧ f(a))

Now we’ll exploit the rapid data flow
property: b ∧ f(T) ≤ f(b)
Let b ≡ a ∧ f(a)
Then a ∧ f(a) ∧ f(T) ≤ f(a∧f(a)) (*)
Note that x ≤ y ⇒ a ∧ x ≤ a ∧ y (**)
To prove this, recall that
 (1) p ∧ q = p ⇒ p ≤ q
 (2) x ≤ y ⇒ x ∧ y = x
Thus (a∧x)∧(a∧y) = a∧(x∧y) = (a∧x)
(by 2) ⇒ (a∧x) ≤ (a∧y) (by 1).

443CS 701 Fall 2005
©

From (*) and (**) we get
a∧a∧f(a)∧f(T) ≤ f(a∧f(a))∧a (***)
Now a ≤ T ⇒ f(a) ≤ f(T) ⇒
f(a)∧f(T) = f(a).
Using this on (***) we get
a∧f(a) ≤ f(a∧f(a))∧a
That is, Input2 ≤ Input3
Note too that
 a ∧ f(a) ≤ a ⇒ f(a∧f(a)) ≤ f(a) ⇒
 a ∧ f(a∧f(a)) ≤ a ∧ f(a)
That is, Input3 ≤ Input2
Thus we conclude Input2 = Input3,
which means we can stop after two
passes independent of lattice height!
(One initial visit plus one reevaluation
via the backedge.)

444CS 701 Fall 2005
©

Many Important Data Flow
Problems are Rapid

Consider reaching definitions, done as
sets. We may have many definitions
to the same variable, so the height of
the lattice may be large.
L is the power set of Basic Blocks
∧ is set union
T is φ; ⊥ is the set of all blocks
a ≤ b ≡ a ⊇ b
fb(in) = (In - Killb) U Genb

where Genb is the last definition to a
variable in b,

 Killb is all defs to a variable except
the last one in b,

445CS 701 Fall 2005
©

 Killb is empty if there is no def to a
variable in b.

The Rapid Data Flow Property is
 a ∧ f(T) ≤ f(a)
In terms of Reaching Definitions this
is
a U f(φ) ⊇ f(a) ≡
a U (φ - Kill) U Gen ⊇ (a - Kill) U Gen
Simplifying,
a U Gen ⊇ (a - Kill) U Gen
which always holds.

446CS 701 Fall 2005
©

Recall

Here it took two passes to transmit
the def in b7 to b1, so we expect 3
passes to evaluate independent of the
lattice height.

x ←

x ←

←x

0

1

2 3

4

5 6

7

8

447CS 701 Fall 2005
©

Constant Propagation isn’t
Rapid

We require that
 a ∧ f(T) ≤ f(a)
Consider

Look at the transfer function for the
second (bottom) block.

i=1
j=1
k=1

k=j
j=i
i=2

448CS 701 Fall 2005
©

f(t) = t’ where
 t’(v) = case(v){
 k: t(j);
 j: t(i);
 i: 2; }
Let a = (⊥,1,1).
f(T) = (2,T,T)
a ∧ f(T) = (⊥,1,1) ∧ (2,T,T) = (⊥,1,1)
f(a) = f(⊥,1,1) = (2,⊥,1).
Now (⊥,1,1) is not ≤ (2,⊥,1)
so this problem isn’t rapid.

449CS 701 Fall 2005
©

Let’s follow the iterations:
Pass 1: In = (1,1,1)∧(T,T,T) = (1,1,1)
 Out = (2,1,1)
Pass 2: In = (1,1,1)∧(2,1,1) = (⊥,1,1)
 Out = (2,⊥,1)
Pass 3: In = (1,1,1)∧(2,⊥,1) = (⊥,⊥,1)
 Out = (2,⊥,⊥)
This took 3 passes. In general, if we
had N variables, we could require N
passes, with each pass resolving the
constant status of one variable.

450CS 701 Fall 2005
©

How Good Is Iterative Data
Flow Analysis?

A single execution of a program will
follow some path
 b0,bi1,bi2,...,bin.

The Data Flow solution along this
path is
fin(...fi2(fi1(f0(T)))...) ≡ f(b0,b1,...,bin)

The best possible static data flow
solution at some block b is computed
over all possible paths from b0 to b.

Let Pb = The set of all paths from b0
to b.

∧
p Pb

f(p)
∈

MOP(b)=

451CS 701 Fall 2005
©

Any particular path pi from b0 to b is
included in Pb.

Thus MOP(b) ∧ f(pi) = MOP(b) ≤ f(pi).

This means MOP(b) is always a safe
approximation to the “true” solution
f(pi).

452CS 701 Fall 2005
©

If we have the distributive property
for transfer functions,
f(a∧b) = f(a) ∧ f(b)
then our iterative algorithm always
computes the MOP solution, the best
static solution possible.
To prove this, note that for trivial
path of length 1, containing only the
start block, b0, the algorithm
computes f0(T) which is MOP(b0)
(trivially).
Now assume that the iterative
algorithm for paths of length n or
less to block c does compute MOP(c).
We’ll show that for paths to block b
of length n+1, MOP(b) is computed.
Let P be the set of all paths to b of
length n+1 or less.

453CS 701 Fall 2005
©

The paths in P end with b.
MOP(b) = fb(f(P1))∧fb(f(P2) ∧ ...

 where P1, P2, ... are the prefixes (of
length n or less) of paths in P with b
removed.
Using the distributive property,
fb(f(P1))∧fb(f(P2) ∧ ... =

fb(f(P1)∧f(P2)∧...).

But note that f(P1)∧f(P2)∧... is just
the input to fb in our iterative
algorithm, which then applies fb.

Thus MOP(b) for paths of length n+1
is computed.

454CS 701 Fall 2005
©

For data flow problems that aren’t
distributive (like constant
propagation), the iterative solution is
≤ the MOP solution.
This means that the solution is a safe
approximation, but perhaps not as
“sharp” as we might wish.

