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Reading Assignment
Read “An Efficient Method of
Computing Static Single Assignment
Form.”
(Linked from the class Web page.)

456CS 701  Fall 2005
©

Exploiting Structure in Data
Flow Analysis

So far we haven’t utilized the fact
that CFGs are constructed from
standard programming language
constructs like IFs, Fors, and Whiles.
Instead of iterating across a given
CFG, we can isolate, and solve
symbolically, subgraphs that
correspond to “standard”
programming language constructs.
We can then progressively simplify
the CFG until we reach a single node,
or until we reach a CFG structure that
matches no standard pattern.
In the latter case, we can solve the
residual graph using our iterative
evaluator.
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Three Program-Building
Operations
1. Sequential Execution (“;”)
2. Conditional Execution (If, Switch)
3. Iterative Execution

   (While, For, Repeat)
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Sequential Execution
We can reduce a sequential “chain” of
basic blocks:

into a single composite block:

The transfer function of bseq is

 fseq = fn ο fn-1 ο ... f1
where ο is functional composition.

b1 b2 bn
. . .

bseq
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Conditional Execution
Given the basic blocks:

we create a single composite block:

The transfer function of bcond is

 fcond = fL1 ο fp ∧ fL2 ο fp

bp

bL1 bL2

bcond
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Iterative Execution
Repeat Loop
Given the basic blocks:

we create a single composite block:

Here bB is the loop body, and bC is the
loop control.

bB

bC

b repeat
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If the loop iterates once, the transfer
function is fC o fB.

If the loop iterates twice, the transfer
function is (fC ο fB) ο (fC ο fB).

Considering all paths, the transfer
function is (fC ο fB) ∧ (fC ο fB)2 ∧ ...

Define fix f ≡ f ∧ f2 ∧ f3 ∧ ...
The transfer function of repeat is
then
 frepeat = fix(fC ο fB)
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While Loop.
Given the basic blocks:

we create a single composite block:

Here again bB is the loop body, and bC
is the loop control.
The loop always executes bC at least
once, and always executes bC as the
last block before exiting.

bC

bB

bwhile
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The transfer function of a while is
therefore
 fwhile = fC ∧ fix(fC ο fB) ο fC
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Evaluating Fixed Points
For lattices of height H, and
monotone transfer functions, fix f
needs to look at no more than H
terms.
In practice, we can give fix f an
operational definition, suitable for
implementation:
Evaluate
 (fix f)(x) {
   prev = soln = f(x);
   while (prev ≠ new = f(prev)){
      prev = new;
      soln = soln ∧ new;
   }
   return soln;
 }
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Example—Reaching Definitions

The transfer functions are either
constant-valued (f1={b1}, f4={b4},
f5={b5}) or identity functions
(f2=f3=f6=f7=Id).

←x
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6

x ←

←x
4
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First we isolate and reduce the
conditional:
fC = f4 ο f3 ∧ f5 ο f3 =
{b4} ο Id U {b5} ο Id = {b4,b5}

←x

1

2

7 3

5

6

x ←

←x
4
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Substituting, we get

We can combine bC and b6, to get a
block equivalent to bC. That is,

f6 ο fC = Id ο fC = fC

1

2

7 C

6

x ←
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We now have

We isolate and reduce the while loop
formed by b2 and bC, creating bW.
The transfer function is
 fW = f2 ∧ (fix(f2 ο fC) o f2=

 Id U (fix(Id ο fC ) ο Id =

 Id U (fix(fC)) =

 Id U (fC ∧ fC
2 ∧ fC

3 ∧ ...) =

 Id U {b4,b5}

1

2

7 C

x ←

469CS 701  Fall 2005
©

We now have

We compose these three sequential
blocks to get the whole solution, fP.

fP = Id ο (Id U {f4,f5}) ο {b1} =

 {b1,b4,b5}.
These are the definitions that reach
the end of the program.
We can expand subgraphs to get the
solutions at interior blocks.

1

W

7

x ←
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Thus at the beginning of the while,
the solution is {b1}.
At the head if the If, the solution is
 (Id U (Id ο fC ο Id) U

(Id ο fC ο Id ο fC ο Id) U ... )({b1}) =
{b1} U {b4,b5} U {b4,b5} U ... =
    {b1,b4,b5}
At the head of the then part of the If,
the solution is Id({b1,b4,b5}) =
{b1,b4,b5}.
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Static Single Assignment Form
Many of the complexities of
optimization and code generation
arise from the fact that a given
variable may be assigned to in many
different places.
Thus reaching definition analysis
gives us the set of assignments that
may reach a given use of a variable.
Live range analysis must track all
assignments that may reach a use of
a variable and merge them into the
same live range.
Available expression analysis must
look at all places a variable may be
assigned to and decide if any kill an
already computed expression.
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What If
each variable is assigned to in only
one place?
(Much like a named constant).
Then for a given use, we can find a
single unique definition point.
But this seems impossible for most
programs—or is it?
In Static Single Assignment (SSA)
Form each assignment to a variable, v,
is changed into a unique assignment
to new variable, vi.

If variable v has n assignments to it
throughout the program, then (at
least) n new variables, v1 to vn, are
created to replace v. All uses of v are
replaced by a use of some vi.
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Phi Functions
Control flow can’t be predicted in
advance, so we can’t always know
which definition of a variable reached
a particular use.
To handle this uncertainty, we create
phi functions.
As illustrated below, if vi and vj both
reach the top of the same block, we
add the assignment
 vk ← φ(vi,vj)

to the top of the block.
Within the block, all uses of v become
uses of vk (until the next assignment
to v).
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What does φ(vi,vj) Mean?

One way to read φ(vi,vj) is that if
control reaches the phi function via
the path on which vi is defined, φ
“selects” vi; otherwise it “selects” vj.

Phi functions may take more than 2
arguments if more than 2 definitions
might reach the same block.
Through phi functions we have simple
links to all the places where v receives
a value, directly or indirectly.
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Example
x=1

a=x x=2

b=x

x=1

x==10

c=x
x++

print x

x1=1

a=x1 x2=2

b=x3

x4=1

x5==10

c=x5
x6=x5+1

print x5

x3=φ (x1,x2)

x5= (x4,x6)φ

Original CFG CFG in SSA Form
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In SSA form computing live ranges is
almost trivial. For each xi include all
xj variables involved in phi functions
that define xi.

Initially, assume x1 to x6 (in our
example) are independent. We then
union into equivalence classes xi
values involved in the same phi
function or assignment.
Thus x1 to x3 are unioned together
(forming a live range). Similarly, x4 to
x6 are unioned to form a live range.
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Constant Propagation in SSA
In SSA form, constant propagation is
simplified since values flow directly
from assignments to uses, and phi
functions represent natural “meet
points” where values are combined
(into a constant or ⊥).
Even conditional constant
propagation fits in. As long as a path
is considered unreachable, it variables
are set to T (and therefore ignored at
phi functions, which meet values
together).
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Example

We have determined that i=6 everywhere.

i 1 j 1 k1 i 2 j 2 k2 k3 i 3 i 4 k4 i 5 j 3

Pass1 6 1 1 6∧T 1∧T 1∧T 0 T 6∧T 0 6 2

Pass2 6 1 1 6∧6 ⊥ ⊥ 0 T 6 0 6 ⊥

i=6
j=1
k=1
repeat
  if (i==6)
     k=0
  else
     i=i+1
  i=i+k
  j=j+1
until (i==j)

i 1=6
j 1=1
k1=1
repeat
  i 2=φ(i 1,i 5)
  j 2=φ(j 1,j 3)
  k 2=φ(k 1,k 4)
  if (i 2==6)
     k 3=0
  else
     i 3=i 2+1
  i 4=φ(i 2,i 3)
  k 4=φ(k 3,k 2)
  i 5=i 4+k4
  j 3=j 2+1
until (i 5==j 3)
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Putting Programs into SSA
Form

Assume we have the CFG for a
program, which we want to put into
SSA form. We must:
•  Rename all definitions and uses of

variables

•  Decide where to add phi functions
Renaming variable definitions is
trivial—each assignment is to a new,
unique variable.
After phi functions are added (at the
heads of selected basic blocks), only
one variable definition (the most
recent in the block) can reach any
use. Thus renaming uses of variables
is easy.
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Placing Phi Functions
Let b be a block with a definition to
some variable, v. If b contains more
than one definition to v, the last (or
most recent) applies.
What is the first basic block following
b where some other definition to v as
well as b’s definition can reach?
In blocks dominated by b, b’s
definition must have been executed,
though other later definitions may
have overwritten b’s definition.
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Domination Frontiers (Again)
Recall that the Domination Frontier
of a block b, is defined as
DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}

The Dominance Frontier of a basic
block N, DF(N), is the set of all blocks
that are immediate successors to
blocks dominated by N, but which
aren’t themselves strictly dominated
by N.
Assume that an initial assignment to
all variables occurs in b0 (possibly of
some special “uninitialized value.”)
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We will need to place a phi function
at the start of all blocks in b’s
Domination Frontier.
The phi functions will join the
definition to v that occurred in b (or
in a block dominated by b) with
definitions occurring on paths that
don’t include b.
After phi functions are added to
blocks in DF(b), the domination
frontier of blocks with newly added
phi’s will need to be computed (since
phi functions imply assignment to a
new vi variable).
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Examples of How Domination
Frontiers Guide Phi Placement

DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
Simple Case:

Here, (N dom M) but ¬(N sdom Z),
so a phi function is needed in Z.

v=1

v=2

N

M

Z

v1=1

v2=2

N

M

Z
v3= φ (v1,v2)

⇒
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Loop:

Here, let M = Z = N. M→Z,
(N dom M) but ¬(N sdom Z),
so a phi function is needed in Z.
DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}

v=init

v=v+1 v2 =φ(v1,v3)
⇒

Z

v1=init

v3=v2+1

Z
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Sometimes Phi’s must be Placed
Iteratively

Now, DF(b1) = {b3}, so we add a phi
function in b3. This adds an
assignment into b3. We then look at
DF(b3) = {b5}, so another phi
function must be added to b5.

v=1

v=3

1

3

5

v1=1

v4=3

1

v5= φ (v3,v4)

⇒
v=2

2

4

v2=2
2

v3= φ (v1,v2)
3 4


