
509CS 701 Fall 2005
©

We’ll need some standard data flow
analyses we’ve seen before:
AvIni = Available In for block i

 = 0 (false) for b0

 =

AvOuti = Compi OR
 (AvIni AND Transpi)

≡ Geni OR
 (AvIni AND ¬ Killi)

AND
p ∈ Pred(i)

 AvOutp

510CS 701 Fall 2005
©

We anticipate an expression if it is
very busy:
AntOuti = VeryBusyOuti
 = 0 (false) if i is an exit block

 =

AntIni = VeryBusyIni

 = AntLoci OR
 (Transpi AND AntOuti)

AND
s ∈ Succ(i)

 AntIns

511CS 701 Fall 2005
©

Partial Availability
Partial availability is similar to
available expression analysis except
that an expression must be computed
(and not killed) along some (not
necessarily all) paths:
PavIni

 = 0 (false) for b0

 =

PavOuti = Compi OR
 (PavIni AND Transpi)

OR
p ∈ Pred(i)

 PavOutp

512CS 701 Fall 2005
©

Where are Computations
Added?

The key to partial redundancy
elimination is deciding where to add
computations of an expression to
change partial redundancies into full
redundancies (which may then be
optimized away).

513CS 701 Fall 2005
©

We’ll start with an “enabling term.”
Consti = AntIni AND

[PavIni OR (Transpi AND ¬ AntLoci)]

This term say that we require the
expression to be:
(1) Anticipated at the start of block i
 (somebody wants the expression)
and
(2a) The expression must be partially

available (to perhaps transform
into full availability)

or
(2b) The block neither kills nor

computes the expression.

514CS 701 Fall 2005
©

Next, we compute PPIni and PPOuti.
PP means “possible placement” of a
computation at the start (PPIni) or
end (PPOuti) of a block.

These values determine whether a
computation of the expression would
be “useful” at the start or end of a
basic block.
PPOuti
= 0 (false) for all exit blocks

=

We try to move computations “up”
(nearer the start block).
It makes sense to compute an
expression at the end of a block if it
makes sense to compute at the start
of all the block’s successors.

AND
s ∈ Succ(i)

 PPIns

515CS 701 Fall 2005
©

PPIni = 0 (false) for b0.

 = Consti
AND (AntLoci OR (Transpi AND PPOuti))

To determine if PPIni is true, we first
check the enabling term. It makes sense
to consider a computation of the
expression at the start of block i if the
expression is anticipated (wanted) and
partially available or if the expression is
anticipated (wanted) and it is neither
computed nor killed in the block.
We then check that the expression is
anticipated locally or that it is
unchanged within the block and possibly
positioned at the end of the block.

AND
p ∈ Pred(i)

 (PPOutp OR AvOutp)

516CS 701 Fall 2005
©

Finally, we check that all the block’s
predecessors either have the expression
available at their ends or are willing to
position a computation at their end.

Note also, the bi-directional nature of
this equation.

517CS 701 Fall 2005
©

Inserting New Computations
After PPIni and PPOuti are computed, we
decide where computations will be
inserted:
Inserti = PPOuti AND (¬ AvOuti) AND
 (¬ PPIni OR ¬ Transpi)

This rule states that we really will
compute the expression at the end of
block i if this is a possible placement
point and the expression is not already
computed and available and moving the
computation still earlier doesn’t work
because the start of the block isn’t a
possible placement point or because the
block kills the expression.

518CS 701 Fall 2005
©

Removing Existing
Computations

We’ve added computations of the
expression to change partial
redundancies into full redundancies.
Once this is done, expressions that
are fully redundant can be removed.
But where?
 Removei = AntLoci and PPIni

This rule states that we remove
computation of the expression in
blocks where it is computed locally
and might be moved to the block’s
beginning.

519CS 701 Fall 2005
©

Partial Redundancy Subsumes
Available Expression Analysis

Using partial redundancy analysis, we
can find (and remove) ordinary fully
redundant available expressions.
Consider a block, b, in which:
(1) The expression is computed

(anticipated) locally
and
(2) The expression is available on

entrance
Point (1) tells us that AntLocb is true

520CS 701 Fall 2005
©

Moreover, recall that
PPInb = Constb AND
 (AntLocb OR ...)

Constb = AntInb AND [PavInb OR ...]

We know AntLocb is true ⇒ AntInb =
true.
Moreover, AvInb = true ⇒ PavInb = true.

Thus Constb = true.

If AvInb is true, AvOutp is true for all p ∈
Pred(b).
Thus PPInb AND AntLocb = true =
Removeb

AND
p ∈ Pred(i)

 (AvOut p)OR ...

521CS 701 Fall 2005
©

Are any computations added earlier (to
any of b’s ancestors)?
No:
Inserti = PPOuti AND (¬ AvOuti) AND
 (¬ PPIni OR ¬ Transpi)

But for any ancestor, i, between the
computation of the expression and b,
AvOuti is true, so Inserti must be false.

522CS 701 Fall 2005
©

Examples of Partial
Redundancy Elimination

At block 3, x+3 is partially, but not
fully, redundant.
PPIn3 = Const3 AND
 (AntLoc3 OR ...)

Const3 = AntIn3 AND [PavIn3 OR ...]
Now AntIn3 = true and PavIn3 = true.

Const3 = true AND true = true

x=1 x=2
x+3

x+3

1 2

3

AND
p ∈ Pred(3)

 (PPOutp OR AvOutp)

523CS 701 Fall 2005
©

PPout1 = PPIn3

Default initialization of PPIn and
PPOut terms is true, since we AND
terms together.
AntLoc3 = true.

PPIn3 = true AND true

 =

PPOut1 AND AvOut2= true AND true
= PPIn3 = PPOut1.

 Insert1 = PPOut1 AND (¬ AvOut1)
AND (¬ PPIn1 OR ¬ Transp1) =

 PPOut1 AND (¬ AvOut1)
AND (¬ Transp1) = true,

so x+3 is inserted at the end of block
3.

AND
p ∈ Pred(3)

 (PPOutp OR AvOutp)

524CS 701 Fall 2005
©

Remove3 = AntLoc3 and PPIn3
= true AND true = true, so x+3 is
removed from block 3.
Is x+3 inserted at the end of block 2?
(It shouldn’t be).

 Insert2 = PPOut2 AND (¬ AvOut2)
AND (¬ PPIn2 OR ¬ Transp2) =

 PPOut2 AND false AND
 (¬ PPIn2 OR ¬ Transp2) = false.
We now have

x=1 x=2
x+3

1 2

3

x+3

525CS 701 Fall 2005
©

Computations May Move Up
Several Blocks

Again, at block 4, x+3 is partially, but
not fully, redundant.
PPIn4 = Const4 AND
 (AntLoc4 OR ...)

x=1 x=2
x+3

1 2

3

x+3
4

AND
p ∈ Pred(4)

 (PPOutp OR AvOutp)

526CS 701 Fall 2005
©

Const4 = AntIn4 AND [PavIn4 OR ...]
Now AntIn4 = true and PavIn4 = true.

Const4 = true AND true = true

PPout3 = PPIn4.

AntLoc4 = true.

PPIn4 = true AND true

 =

PPOut3 = true.

PPIn3 = Const3 AND
 ((Transp3 AND PPOut3) OR ...)

Const3 = AntIn3 AND [PavIn3 OR ...]
AntIn3 = true and PavIn3 = true.

AND
p ∈ Pred(4)

 (PPOutp OR AvOutp)

AND
p ∈ Pred(3)

 (PPOutp OR AvOutp)

527CS 701 Fall 2005
©

Const3 = true AND true = true

PPOut1 = PPIn3

Transp3 = true.

PPIn3 = true AND (true AND true)

 =

PPOut1 AND AvOut2= true AND true
= PPIn3 = PPOut1.

AND
p ∈ Pred(3)

 (PPOutp OR AvOutp)

528CS 701 Fall 2005
©

Where Do We Insert
Computations?

 Insert3 = PPOut3 AND (¬ AvOut3)
AND (¬ PPIn3 OR ¬ Transp3) =

 true AND (true) AND
 (false OR false) = false
so x+3 is not inserted at the end of
block 3.
Insert2 = PPOut2 AND (¬ AvOut2)

AND (¬ PPIn2 OR ¬ Transp2) =

 PPOut2 AND (false)
AND (¬ PPIn2 OR ¬ Transp2)=false,

so x+3 is not inserted at the end of
block 2.

529CS 701 Fall 2005
©

 Insert1 = PPOut1 AND (¬ AvOut1)
AND (¬ PPIn1 OR ¬ Transp1) =

 true AND (true) AND
 (¬ PPIn1 OR true) = true

so x+3 is inserted at the end of block
3.
Remove4 = AntLoc4 and PPIn4

 = true AND true = true, so x+3 is
removed from block 4.

We finally have

x=1 x=2
x+3

1 2

3

4

x+3

530CS 701 Fall 2005
©

Code Movement is Never
Speculative

Partial redundancy analysis has the
attractive property that it never adds
a computation to an execution path
that doesn’t use the computation.
That is, we never speculatively add
computations.
How do we know this is so?
Assume we are about to insert a
computation of an expression at the
end of block b, but there is a path
from b that doesn’t later compute
and use the expression.
Say the path goes from b to c (a
successor of b), and then eventually
to an end node.

531CS 701 Fall 2005
©

Looking at the rules for insertion of
an expression:
Insertb = PPOutb AND ...

PPOutb = PPInc AND ...

PPInc = Constc AND ...

Constc = AntInc AND ...

But if the expression isn’t computed
and used on the path through c, then
AntInc = False, forcing Insertb = false,
a contradiction.

532CS 701 Fall 2005
©

Can Computations Always be
Moved Up?

Sometimes an attempt to move a
computation earlier in the CFG can be
blocked. Consider

We’d like to move a+b into block 2,
but this may be impossible if a+b isn’t
anticipated on all paths out of block
2.
The solution to this difficulty is no
notice that we really want a+b
computed on the edge from 2 to 3.

a + b

a + b

1 2

3

533CS 701 Fall 2005
©

If we add an artificial block between
blocks 2 and 3, movement of a+b out
of block 3 is no longer blocked:

a + b
1 2

3

a + b

534CS 701 Fall 2005
©

Loop Invariant Code Motion
Partial redundancy elimination
subsumes loop invariant code motion.
Why?
The iteration of the loop makes the
invariant expression partially
redundant on a path from the
expression to itself.
If we’re guaranteed the loop will
iterate at least once (do-while or
repeat-until loops), then evaluation
of the expression can be anticipated
in the loop’s preheader.

535CS 701 Fall 2005
©

Consider
a = val

 do
 ...
 a+b
 ...
 while (...)

a = val

...
a+b
...

Preheader

Body

Control

536CS 701 Fall 2005
©

PPInB = ConstB AND
 (AntLocB OR ...) AND
 (PPOutp AND AvOutC)
ConstB = AntInB AND [PavInB OR ...]

AntInB = true, PavInB = true ⇒
ConstB = true

PPoutP = PPInB, AntLocB= true,
AvOutC = true ⇒ PPInB = true.

InsertP = PPOutP AND (¬ AvOutP)
AND (¬ PPInP OR ¬ TranspP) =

 true AND (true) AND
 (¬ PPInP OR true) = true,
so we may insert a+b at the end of
the preheader.
RemoveB = AntLocB and PPInB =
true AND true, so we may remove
a+b from the loop body.

537CS 701 Fall 2005
©

What About While & For
Loops?

The problem here is that the loop may
iterate zero times, so the loop
invariant isn’t really very busy
(anticipated) in the preheader.
We can, however, change a while
(or for) into a do while:
while (expr){ if (expr)

 body ≡ do {body} ≈
} while (expr)

goto L:
 do {body}
 L:
 while (expr)

After we know the loop will iterate
once, we can evaluate the loop
invariant.

538CS 701 Fall 2005
©

Code Placement in Partial
Redundancy Elimination

While partial redundancy elimination
correctly places code to avoid
unnecessary reevaluation of
expressions along execution paths, its
choice of code placement can
sometimes be disappointing.
It always moves an expression back as
far as possible, as long as
computations aren’t added to
unwanted execution paths. This may
unnecessarily lengthen live ranges,
making register allocation more
difficult.

539CS 701 Fall 2005
©

For example, in

where will we insert a+b?
InsertP = PPOutP AND (¬ AvOutP)

AND (¬ PPInP OR ¬ TranspP)

The last term will be true at the top
block, but not elsewhere.

a = val

...
a+b
...

540CS 701 Fall 2005
©

In “Lazy Code Motion” (PLDI 1992),
Knoop, Ruething and Steffan show
how to eliminate partial redundancies
while minimizing register pressure.
Their technique seeks to evaluate an
expression as “late as possible” while
still maintaining computational
optimality (no redundant or
unnecessary evaluations on any
execution paths).
Their technique places loop invariants
in the loop preheader rather than in
an earlier predecessor block as Morel
& Renvoise do.

541CS 701 Fall 2005
©

Partial Dead Code Elimination
Partial Redundancy Elimination aims
to never reevaluate an expression on
any path, and never to add an
expression on any path where it isn’t
needed.
These ideas suggest an interesting
related optimization—eliminating
expressions that are partially dead.
Consider

y=a+b

y=0

print(y)

542CS 701 Fall 2005
©

On the left execution path, a+b is
dead, and hence useless. We’d prefer
to compute a+b only on paths where
it is used, obtaining

This optimization is investigated in
“Partial Dead Code Elimination” (PLDI
1994), Knoop, Ruething and Steffan.
This optimization “sinks”
computations onto paths where they
are needed.

y=0

print(y)

y=a+b

