PriorityRegAlloc(proc, regCount) {
Ig — buildInterferenceGraph(proc)

unconstrained
{ n O nodes(ig) LIneighborCount(n) < regCount }

constrained —
{ n O nodes(ig) LIneighborCount(n) = regCount }

while( constrained # @) {

for ( ¢ U constrained such that not colorable(c)
and canSplit(c) ) {

cl, c2 — split(c)

constrained — constrained - {c}

If ( neighborCount(cl) < regCount )
unconstrained — unconstrained U { c1}

else constrained — constrained U {c1}
If ( neighborCount(c2) < regCount)
unconstrained — unconstrained U { c2}

else constrained — constrained U {c2}

for ( d O neighbors(c) such that
d [J unconstrained and
neighborCount(d) = regCount ){

unconstrained — unconstrained - {d}

constrained — constrained U {d}
}  }// End of both for loops

CS 701 Fall 2005° 134



/* At this point all nodes in constrained are
colorable or can’t be split */

Select p O constrained such that
priority(p) is maximized

If ( colorable(p) )
color(p)
else spill(p)
} // End of While
color all nodes [0 unconstrained

CS 701 Fall 2005° 135



