
134CS 701 Fall 2005
©

PriorityRegAlloc(proc, regCount) {
 ig ← buildInterferenceGraph(proc)
 unconstrained ←

{ n ∈ nodes(ig)  neighborCount(n) < regCount }
 constrained ←

{ n ∈ nodes(ig)  neighborCount(n) ≥ regCount }

 while(constrained ≠ φ) {
for (c ∈ constrained such that not colorable(c)

and canSplit(c)) {
c1, c2 ← split(c)
constrained ← constrained - {c}
if (neighborCount(c1) < regCount)

unconstrained ← unconstrained U { c1}

else constrained ← constrained U {c1}
 if (neighborCount(c2) < regCount)

unconstrained ← unconstrained U { c2}

else constrained ← constrained U {c2}
for (d ∈ neighbors(c) such that

 d ∈ unconstrained and
 neighborCount(d) ≥ regCount){
 unconstrained ← unconstrained - {d}

constrained ← constrained U {d}
 } } // End of both for loops

135CS 701 Fall 2005
©

/* At this point all nodes in constrained are
 colorable or can’t be split */

 Select p ∈ constrained such that
 priority(p) is maximized
 if (colorable(p))

 color(p)
 else spill(p)
 } // End of While
 color all nodes ∈ unconstrained
}

